File size: 21,905 Bytes
ca4b9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056048b
ca4b9a6
 
 
 
 
 
 
 
 
 
 
 
 
056048b
ca4b9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056048b
ca4b9a6
056048b
ca4b9a6
 
 
 
056048b
ca4b9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056048b
ca4b9a6
056048b
ca4b9a6
 
 
 
056048b
ca4b9a6
 
056048b
ca4b9a6
 
7b9c3a3
ca4b9a6
 
 
 
 
 
 
056048b
ca4b9a6
 
 
 
 
 
 
056048b
ca4b9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aa93c6
 
 
 
ca4b9a6
3aa93c6
 
ca4b9a6
3aa93c6
ca4b9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c1ec3
 
ca4b9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9c3a3
ca4b9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8fa29b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
import torch, os, traceback, sys, warnings, shutil, numpy as np
import gradio as gr
import librosa
import asyncio
import rarfile
import edge_tts
import yt_dlp
import ffmpeg
import gdown
import subprocess
import wave
import soundfile as sf
from scipy.io import wavfile
from datetime import datetime
from urllib.parse import urlparse
from mega import Mega

import base64
import tempfile
import threading
import hashlib
import os
import werkzeug
from pydub import AudioSegment
import uuid
from threading import Semaphore
from threading import Lock
from multiprocessing import Process, SimpleQueue, set_start_method,get_context
from queue import Empty
from pydub import AudioSegment

import io
import runpod
import boto3





now_dir = os.getcwd()
cpt={}
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.environ["TEMP"] = tmp
split_model="htdemucs"
convert_voice_lock = Lock()
# Define the maximum number of concurrent requests
MAX_CONCURRENT_REQUESTS = 2  # Adjust this number as needed

# Initialize the semaphore with the maximum number of concurrent requests
request_semaphore = Semaphore(MAX_CONCURRENT_REQUESTS)

task_status_tracker = {}
os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "1"  # ONLY FOR TESTING, REMOVE IN PRODUCTION
os.environ["OAUTHLIB_RELAX_TOKEN_SCOPE"] = "1"
ACCESS_ID = os.getenv('ACCESS_ID', '')
SECRET_KEY = os.getenv('SECRET_KEY', '')

#set_start_method('spawn', force=True)
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from fairseq import checkpoint_utils
from vc_infer_pipeline import VC
from config import Config
config = Config()

tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]

hubert_model = None

f0method_mode = ["pm", "harvest", "crepe"]
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"






if os.path.isfile("rmvpe.pt"):
    f0method_mode.insert(2, "rmvpe")
    f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"




def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()

load_hubert()

weight_root = "weights"
index_root = "weights/index"
weights_model = []
weights_index = []
for _, _, model_files in os.walk(weight_root):
    for file in model_files:
        if file.endswith(".pth"):
            weights_model.append(file)
for _, _, index_files in os.walk(index_root):
    for file in index_files:
        if file.endswith('.index') and "trained" not in file:
            weights_index.append(os.path.join(index_root, file))

def check_models():
    weights_model = []
    weights_index = []
    for _, _, model_files in os.walk(weight_root):
        for file in model_files:
            if file.endswith(".pth"):
                weights_model.append(file)
    for _, _, index_files in os.walk(index_root):
        for file in index_files:
            if file.endswith('.index') and "trained" not in file:
                weights_index.append(os.path.join(index_root, file))
    return (
        gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
        gr.Dropdown.update(choices=sorted(weights_index))
    )

def clean():
    return (
        gr.Dropdown.update(value=""),
        gr.Slider.update(visible=False)
    )
# Function to delete files
def cleanup_files(file_paths):
    for path in file_paths:
        try:
            os.remove(path)
            print(f"Deleted {path}")
        except Exception as e:
            print(f"Error deleting {path}: {e}")





def upload_file(local_file_path,bucket_name):
    # Configure the client with your credentials
    session = boto3.session.Session()
    client = session.client('s3',
                            region_name='nyc3',
                            endpoint_url='https://nyc3.digitaloceanspaces.com',
                            aws_access_key_id=ACCESS_ID,
                            aws_secret_access_key=SECRET_KEY)
    
    # Define the bucket and object key
    
    filename = os.path.basename(local_file_path)
    object_key = f'{filename}'  # Construct the object key

    # Define the local path to save the file
    

    
    try:
        response=client.upload_file(local_file_path, bucket_name, filename)
        
    except client.exceptions.NoSuchKey:
        return "error: File not found in the bucket"
    except Exception as e:
        return "error: File not found in the bucket"

    # Optional: Send the file directly to the client
    # return send_file(local_file_path, as_attachment=True)

    return "success"

    

def download_file(filename,bucket_name):
    # Configure the client with your credentials
    session = boto3.session.Session()
    client = session.client('s3',
                            region_name='nyc3',
                            endpoint_url='https://nyc3.digitaloceanspaces.com',
                            aws_access_key_id=ACCESS_ID,
                            aws_secret_access_key=SECRET_KEY)
    
    # Define the bucket and object key
    
    object_key = f'{filename}'  # Construct the object key

    # Define the local path to save the file
    local_file_path = os.path.join('downloads', filename)

# Check if the 'downloads' directory exists, create it if not
    if not os.path.exists(os.path.dirname(local_file_path)):
        os.makedirs(os.path.dirname(local_file_path))

    # Download the file from the bucket
    try:
        client.download_file(bucket_name, object_key, local_file_path)
    except client.exceptions.NoSuchKey:
        return "file not in buecket"
    except Exception as e:
        return "exception"

    # Optional: Send the file directly to the client
    # return send_file(local_file_path, as_attachment=True)

    return "success"
    








def get_status(audio_id):
    # Retrieve the task status using the unique ID
    print(audio_id)
    status_info = task_status_tracker.get(audio_id, {"status": "Unknown ID", "percentage": 0})
    return "status"

processed_audio_storage = {}

def api_convert_voice(filename,spk_id1,unique_id):
    acquired = request_semaphore.acquire(blocking=False)
    
    if not acquired:
        return "error in lock"
    #task_status_tracker[unique_id] = {"status": "Starting", "percentage": 0}
    try:
    
        #if session.get('submitted'):
        #    return jsonify({"error": "Form already submitted"}), 400

        # Process the form here...
        # Set the flag indicating the form has been submitted
        #session['submitted'] = True
        
        spk_id = spk_id1+'.pth'
        print("speaker id path=",spk_id)
        voice_transform = 0
        local_file_path = os.path.join('downloads', filename)
        # The file part
        
        file_size = os.path.getsize(local_file_path)
        if file_size > 10 * 1024 * 1024:  # 10 MB limit
            return json.dumps({"error": "File size exceeds 10 MB"}), 400

        content_type_format_map = {
            '.mp3': 'mp3',
            '.wav': 'wav',
            '.mp4': 'mp4',
            '.m4a': 'mp4',
        }
        _, file_extension = os.path.splitext(local_file_path)
        audio_format = content_type_format_map.get(file_extension.lower(), 'mp3') 
        # Default to 'mp3' if content type is unknown (or adjust as needed)
        #audio_format = content_type_format_map.get(file.content_type, 'mp3')

        # Convert the uploaded file to an audio segment
        audio = AudioSegment.from_file(local_file_path, format=audio_format)
        
        
        
    
    # Calculate audio length in minutes
        audio_length_minutes = len(audio) / 60000.0  # pydub returns length in milliseconds
    
        if audio_length_minutes > 5:
            return json.dumps({"error": "Audio length exceeds 5 minutes"}), 400   
            
        #created_files = []
        # Save the file to a temporary path
        #unique_id = str(uuid.uuid4())
        print(unique_id)
        base_filename = os.path.basename(local_file_path)
        
        filename = werkzeug.utils.secure_filename(base_filename)
        input_audio_path = os.path.join(tmp, f"{spk_id}_input_audio_{unique_id}.{filename.split('.')[-1]}")
        #file.save(input_audio_path)
        os.rename(local_file_path, input_audio_path)
        
        #created_files.append(input_audio_path)
        
        #split audio
        task_status_tracker[unique_id] = {"status": "Processing: Step 1", "percentage": 30}

        cut_vocal_and_inst(input_audio_path,spk_id,unique_id)
        print("audio splitting performed")
        vocal_path = f"output/{spk_id}_{unique_id}/{split_model}/{spk_id}_input_audio_{unique_id}/vocals.wav"
        inst = f"output/{spk_id}_{unique_id}/{split_model}/{spk_id}_input_audio_{unique_id}/no_vocals.wav"
        print("*****before making call to convert ", unique_id)
        #task_status_tracker[unique_id] = "Processing: Step 2"
        #output_queue = SimpleQueue()
        ctx = get_context('spawn')
        output_queue = ctx.Queue()
    # Create and start the process
        p = ctx.Process(target=worker, args=(spk_id, vocal_path, voice_transform, unique_id, output_queue,))
        p.start()
    
    # Wait for the process to finish and get the result
        p.join()
        print("*******waiting for process to complete ")
        
        output_path = output_queue.get()
        task_status_tracker[unique_id] = {"status": "Processing: Step 2", "percentage": 80}
        #if isinstance(output_path, Exception):
         #   print("Exception in worker:", output_path)
        #else:
         #   print("output path of converted voice", output_path)
        #output_path = convert_voice(spk_id, vocal_path, voice_transform,unique_id)
        output_path1= combine_vocal_and_inst(output_path,inst,unique_id)
        
        processed_audio_storage[unique_id] = output_path1
        #session['processed_audio_id'] = unique_id 
        task_status_tracker[unique_id] = {"status": "Finalizing", "percentage": 100}
        print(output_path1)
        upload_file(outputpath1)
        print("file uploaded")
        #created_files.extend([vocal_path, inst, output_path])
        task_status_tracker[unique_id]["status"] = "Completed"
        
    finally:
        request_semaphore.release()
    #if os.path.exists(output_path1):
        
    #    return send_file(output_path1, as_attachment=True)
    #else:
    #    return jsonify({"error": "File not found."}), 404

def convert_voice_thread_safe(spk_id, vocal_path, voice_transform, unique_id):
    with convert_voice_lock:
        return convert_voice(spk_id, vocal_path, voice_transform, unique_id)



def get_vc_safe(sid, to_return_protect0):
    with convert_voice_lock:
        return get_vc(sid, to_return_protect0)




def worker(spk_id, input_audio_path, voice_transform, unique_id, output_queue):
    try:
        output_audio_path = convert_voice(spk_id, input_audio_path, voice_transform, unique_id)
        print("output in worker for audio file", output_audio_path)
        output_queue.put(output_audio_path)
        print("added to output queue")
    except Exception as e:
        print("exception in adding to queue")
        output_queue.put(e)  # Send the exception to the main process for debugging
        

def convert_voice(spk_id, input_audio_path, voice_transform,unique_id):
    get_vc(spk_id,0.5)
    print("*****before makinf call to vc ", unique_id)

   
    output_audio_path = vc_single(
        sid=0,
        input_audio_path=input_audio_path,
        f0_up_key=voice_transform,  # Assuming voice_transform corresponds to f0_up_key
        f0_file=None ,
        f0_method="rmvpe",
        file_index=spk_id,  # Assuming file_index_path corresponds to file_index
        index_rate=0.75,
        filter_radius=3,
        resample_sr=0,
        rms_mix_rate=0.25,
        protect=0.33,  # Adjusted from protect_rate to protect to match the function signature,
        unique_id=unique_id
    )
    print(output_audio_path)
    return output_audio_path

def cut_vocal_and_inst(audio_path,spk_id,unique_id):
    
    vocal_path = "output/result/audio.wav"
    os.makedirs("output/result", exist_ok=True)
    #wavfile.write(vocal_path, audio_data[0], audio_data[1])
    #logs.append("Starting the audio splitting process...")
    #yield "\n".join(logs), None, None
    print("before executing splitter")
    command = f"demucs --two-stems=vocals -n {split_model} {audio_path} -o output/{spk_id}_{unique_id}"
    env = os.environ.copy()

# Add or modify the environment variable for this subprocess
    env["CUDA_VISIBLE_DEVICES"] = "0"
    
    
    
    #result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
    result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
    if result.returncode != 0:
        print("Demucs process failed:", result.stderr)
    else:
        print("Demucs process completed successfully.")
    print("after executing splitter")
    #for line in result.stdout:
    #    logs.append(line)
    #    yield "\n".join(logs), None, None
    
    print(result.stdout)
    vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
    inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
    #logs.append("Audio splitting complete.")


def combine_vocal_and_inst(vocal_path, inst_path, output_path):
    
    vocal_volume=1
    inst_volume=1
    os.makedirs("output/result", exist_ok=True)
    # Assuming vocal_path and inst_path are now directly passed as arguments
    output_path = f"output/result/{output_path}.mp3"
    #command = f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame "{output_path}"'
    #command=f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex "amix=inputs=2:duration=longest" -b:a 320k -c:a libmp3lame "{output_path}"'
    # Load the audio files
    print(vocal_path)
    print(inst_path)
    vocal = AudioSegment.from_file(vocal_path)
    instrumental = AudioSegment.from_file(inst_path)

# Overlay the vocal track on top of the instrumental track
    combined = vocal.overlay(instrumental)

# Export the result
    combined.export(output_path, format="mp3")

    #result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    return output_path



def vc_single(
    sid,
    input_audio_path,    
    f0_up_key,
    f0_file,
    f0_method,
    file_index,
    index_rate,
    filter_radius,
    resample_sr,
    rms_mix_rate,
    protect,
    unique_id
):  # spk_item, input_audio0, vc_transform0,f0_file,f0method0
    global tgt_sr, net_g, vc, hubert_model, version, cpt
    print("***** in vc ", unique_id)

    try:
        logs = []
        print(f"Converting...")
        
        audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
        print(f"found audio ")
        f0_up_key = int(f0_up_key)
        times = [0, 0, 0]
        if hubert_model == None:
            load_hubert()
        print("loaded hubert")
        if_f0 = 1
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            0,
            audio,
            input_audio_path,
            times,
            f0_up_key,
            f0_method,
            file_index,
            # file_big_npy,
            index_rate,
            if_f0,
            filter_radius,
            tgt_sr,
            resample_sr,
            rms_mix_rate,
            version,
            protect,
            f0_file=f0_file
        )
        
    
    # Get the current thread's name or ID
        
        
     
        if resample_sr >= 16000 and tgt_sr != resample_sr:
            tgt_sr = resample_sr
        index_info = (
            "Using index:%s." % file_index
            if os.path.exists(file_index)
            else "Index not used."
        )
        
        print("writing to FS")
        #output_file_path = os.path.join("output", f"converted_audio_{sid}.wav")  # Adjust path as needed
        # Assuming 'unique_id' is passed to convert_voice function along with 'sid'
        print("***** before writing to file outout ", unique_id)
        output_file_path = os.path.join("output", f"converted_audio_{sid}_{unique_id}.wav")  # Adjust path as needed

        print("******* output file path ",output_file_path)
        os.makedirs(os.path.dirname(output_file_path), exist_ok=True)  # Create the output directory if it doesn't exist
        print("create dir")
        # Save the audio file using the target sampling rate
        sf.write(output_file_path, audio_opt, tgt_sr)
        
        print("wrote to FS")

        # Return the path to the saved file along with any other information
        
        return output_file_path
           
            
    except:
        info = traceback.format_exc()
        
        return info, (None, None)




def get_vc(sid, to_return_protect0):
    global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
    if sid == "" or sid == []:
        global hubert_model
        if hubert_model is not None:  # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
            print("clean_empty_cache")
            del net_g, n_spk, vc, hubert_model, tgt_sr  # ,cpt
            hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            ###楼下不这么折腾清理不干净
            if_f0 = cpt[sid].get("f0", 1)
            version = cpt[sid].get("version", "v1")
            if version == "v1":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs256NSFsid(
                        *cpt[sid]["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs256NSFsid_nono(*cpt[sid]["config"])
            elif version == "v2":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs768NSFsid(
                        *cpt[sid]["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs768NSFsid_nono(*cpt[sid]["config"])
            del net_g, cpt
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            cpt = None
        return (
            gr.Slider.update(maximum=2333, visible=False),
            gr.Slider.update(visible=True),
            gr.Dropdown.update(choices=sorted(weights_index), value=""),
            gr.Markdown.update(value="# <center> No model selected")
        )
    print(f"Loading {sid} model...")
    selected_model = sid[:-4]
    cpt[sid] = torch.load(os.path.join(weight_root, sid), map_location="cpu")
    tgt_sr = cpt[sid]["config"][-1]
    cpt[sid]["config"][-3] = cpt[sid]["weight"]["emb_g.weight"].shape[0]
    if_f0 = cpt[sid].get("f0", 1)
    if if_f0 == 0:
        to_return_protect0 = {
            "visible": False,
            "value": 0.5,
            "__type__": "update",
        }
    else:
        to_return_protect0 = {
            "visible": True,
            "value": to_return_protect0,
            "__type__": "update",
        }
    version = cpt[sid].get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt[sid]["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt[sid]["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt[sid]["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt[sid]["config"])
    del net_g.enc_q
    print(net_g.load_state_dict(cpt[sid]["weight"], strict=False))
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)
    n_spk = cpt[sid]["config"][-3]
    weights_index = []
    for _, _, index_files in os.walk(index_root):
        for file in index_files:
            if file.endswith('.index') and "trained" not in file:
                weights_index.append(os.path.join(index_root, file))
    if weights_index == []:
        selected_index = gr.Dropdown.update(value="")
    else:
        selected_index = gr.Dropdown.update(value=weights_index[0])
    for index, model_index in enumerate(weights_index):
        if selected_model in model_index:
            selected_index = gr.Dropdown.update(value=weights_index[index])
            break
    return (
        gr.Slider.update(maximum=n_spk, visible=True),
        to_return_protect0,
        selected_index,
        gr.Markdown.update(
            f'## <center> {selected_model}\n'+
            f'### <center> RVC {version} Model'
        )
    )



def handler(job):
    job_input = job["input"]  # Access the input from the request.
    filename=job_input["filename"]
    spk_id=job_input["spk_id"]
    unique_id=job_input["unique_id"]
    download_file(filename,"sing")
    api_convert_voice(filename,spk_id,unique_id)
    # Add your custom code here.
    return "Your job results"    


runpod.serverless.start({"handler": handler})  # Required.