Spaces:
Sleeping
Sleeping
import torch, os, traceback, sys, warnings, shutil, numpy as np | |
import gradio as gr | |
import librosa | |
import asyncio | |
import rarfile | |
import edge_tts | |
import yt_dlp | |
import ffmpeg | |
import gdown | |
import subprocess | |
import wave | |
import soundfile as sf | |
from scipy.io import wavfile | |
from datetime import datetime | |
from urllib.parse import urlparse | |
from mega import Mega | |
from flask import Flask, request, jsonify | |
app = Flask(__name__) | |
now_dir = os.getcwd() | |
tmp = os.path.join(now_dir, "TEMP") | |
shutil.rmtree(tmp, ignore_errors=True) | |
os.makedirs(tmp, exist_ok=True) | |
os.environ["TEMP"] = tmp | |
from lib.infer_pack.models import ( | |
SynthesizerTrnMs256NSFsid, | |
SynthesizerTrnMs256NSFsid_nono, | |
SynthesizerTrnMs768NSFsid, | |
SynthesizerTrnMs768NSFsid_nono, | |
) | |
from fairseq import checkpoint_utils | |
from vc_infer_pipeline import VC | |
from config import Config | |
config = Config() | |
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) | |
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list] | |
hubert_model = None | |
f0method_mode = ["pm", "harvest", "crepe"] | |
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)" | |
if os.path.isfile("rmvpe.pt"): | |
f0method_mode.insert(2, "rmvpe") | |
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)" | |
def load_hubert(): | |
global hubert_model | |
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | |
["hubert_base.pt"], | |
suffix="", | |
) | |
hubert_model = models[0] | |
hubert_model = hubert_model.to(config.device) | |
if config.is_half: | |
hubert_model = hubert_model.half() | |
else: | |
hubert_model = hubert_model.float() | |
hubert_model.eval() | |
load_hubert() | |
weight_root = "weights" | |
index_root = "weights/index" | |
weights_model = [] | |
weights_index = [] | |
for _, _, model_files in os.walk(weight_root): | |
for file in model_files: | |
if file.endswith(".pth"): | |
weights_model.append(file) | |
for _, _, index_files in os.walk(index_root): | |
for file in index_files: | |
if file.endswith('.index') and "trained" not in file: | |
weights_index.append(os.path.join(index_root, file)) | |
def check_models(): | |
weights_model = [] | |
weights_index = [] | |
for _, _, model_files in os.walk(weight_root): | |
for file in model_files: | |
if file.endswith(".pth"): | |
weights_model.append(file) | |
for _, _, index_files in os.walk(index_root): | |
for file in index_files: | |
if file.endswith('.index') and "trained" not in file: | |
weights_index.append(os.path.join(index_root, file)) | |
return ( | |
gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]), | |
gr.Dropdown.update(choices=sorted(weights_index)) | |
) | |
def clean(): | |
return ( | |
gr.Dropdown.update(value=""), | |
gr.Slider.update(visible=False) | |
) | |
def api_convert_voice(): | |
data = request.json | |
spk_id = data['spk_id'] | |
input_audio_path = data['input_audio_path'] | |
voice_transform = data['voice_transform'] | |
print(spk_id) | |
output_path = convert_voice(spk_id, input_audio_path, voice_transform) | |
print(output_path) | |
return jsonify({"output_audio_path": output_path}) | |
def convert_voice(spk_id, input_audio_path, voice_transform): | |
get_vc(spk_id,0.5) | |
output_audio_path = vc_single( | |
sid=spk_id, | |
input_audio_path=input_audio_path, | |
f0_up_key=voice_transform, # Assuming voice_transform corresponds to f0_up_key | |
f0_file=None , | |
f0_method="rmvpe", | |
file_index="model.index", # Assuming file_index_path corresponds to file_index | |
index_rate=0.75, | |
filter_radius=3, | |
resample_sr=0, | |
rms_mix_rate=0.25, | |
protect=0.33 # Adjusted from protect_rate to protect to match the function signature | |
) | |
print(output_audio_path) | |
return output_audio_path | |
def vc_single( | |
sid, | |
input_audio_path, | |
f0_up_key, | |
f0_file, | |
f0_method, | |
file_index, | |
index_rate, | |
filter_radius, | |
resample_sr, | |
rms_mix_rate, | |
protect | |
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0 | |
global tgt_sr, net_g, vc, hubert_model, version, cpt | |
try: | |
logs = [] | |
print(f"Converting...") | |
audio, sr = librosa.load(input_audio_path, sr=16000, mono=True) | |
print(f"found audio ") | |
f0_up_key = int(f0_up_key) | |
times = [0, 0, 0] | |
if hubert_model == None: | |
load_hubert() | |
print("loaded hubert") | |
if_f0 = 1 | |
audio_opt = vc.pipeline( | |
hubert_model, | |
net_g, | |
sid, | |
audio, | |
input_audio_path, | |
times, | |
f0_up_key, | |
f0_method, | |
file_index, | |
# file_big_npy, | |
index_rate, | |
if_f0, | |
filter_radius, | |
tgt_sr, | |
resample_sr, | |
rms_mix_rate, | |
version, | |
protect, | |
f0_file=f0_file | |
) | |
if resample_sr >= 16000 and tgt_sr != resample_sr: | |
tgt_sr = resample_sr | |
index_info = ( | |
"Using index:%s." % file_index | |
if os.path.exists(file_index) | |
else "Index not used." | |
) | |
print("writing to FS") | |
output_file_path = os.path.join("output", f"converted_audio_{sid}.wav") # Adjust path as needed | |
os.makedirs(os.path.dirname(output_file_path), exist_ok=True) # Create the output directory if it doesn't exist | |
print("create dir") | |
# Save the audio file using the target sampling rate | |
sf.write(output_file_path, audio_opt, tgt_sr) | |
print("wrote to FS") | |
# Return the path to the saved file along with any other information | |
return ( | |
f"Success. Audio saved to {output_file_path}\n{index_info}\nTime:\nnpy: %.2fs, f0: %.2fs, infer: %.2fs." | |
% (*times,), | |
output_file_path, | |
) | |
except: | |
info = traceback.format_exc() | |
return info, (None, None) | |
def get_vc(sid, to_return_protect0): | |
global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index | |
if sid == "" or sid == []: | |
global hubert_model | |
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 | |
print("clean_empty_cache") | |
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt | |
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
###楼下不这么折腾清理不干净 | |
if_f0 = cpt.get("f0", 1) | |
version = cpt.get("version", "v1") | |
if version == "v1": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs256NSFsid( | |
*cpt["config"], is_half=config.is_half | |
) | |
else: | |
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
elif version == "v2": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs768NSFsid( | |
*cpt["config"], is_half=config.is_half | |
) | |
else: | |
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
del net_g, cpt | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
cpt = None | |
return ( | |
gr.Slider.update(maximum=2333, visible=False), | |
gr.Slider.update(visible=True), | |
gr.Dropdown.update(choices=sorted(weights_index), value=""), | |
gr.Markdown.update(value="# <center> No model selected") | |
) | |
print(f"Loading {sid} model...") | |
selected_model = sid[:-4] | |
cpt = torch.load(os.path.join(weight_root, sid), map_location="cpu") | |
tgt_sr = cpt["config"][-1] | |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | |
if_f0 = cpt.get("f0", 1) | |
if if_f0 == 0: | |
to_return_protect0 = { | |
"visible": False, | |
"value": 0.5, | |
"__type__": "update", | |
} | |
else: | |
to_return_protect0 = { | |
"visible": True, | |
"value": to_return_protect0, | |
"__type__": "update", | |
} | |
version = cpt.get("version", "v1") | |
if version == "v1": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) | |
else: | |
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
elif version == "v2": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) | |
else: | |
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
del net_g.enc_q | |
print(net_g.load_state_dict(cpt["weight"], strict=False)) | |
net_g.eval().to(config.device) | |
if config.is_half: | |
net_g = net_g.half() | |
else: | |
net_g = net_g.float() | |
vc = VC(tgt_sr, config) | |
n_spk = cpt["config"][-3] | |
weights_index = [] | |
for _, _, index_files in os.walk(index_root): | |
for file in index_files: | |
if file.endswith('.index') and "trained" not in file: | |
weights_index.append(os.path.join(index_root, file)) | |
if weights_index == []: | |
selected_index = gr.Dropdown.update(value="") | |
else: | |
selected_index = gr.Dropdown.update(value=weights_index[0]) | |
for index, model_index in enumerate(weights_index): | |
if selected_model in model_index: | |
selected_index = gr.Dropdown.update(value=weights_index[index]) | |
break | |
return ( | |
gr.Slider.update(maximum=n_spk, visible=True), | |
to_return_protect0, | |
selected_index, | |
gr.Markdown.update( | |
f'## <center> {selected_model}\n'+ | |
f'### <center> RVC {version} Model' | |
) | |
) | |
def find_audio_files(folder_path, extensions): | |
audio_files = [] | |
for root, dirs, files in os.walk(folder_path): | |
for file in files: | |
if any(file.endswith(ext) for ext in extensions): | |
audio_files.append(file) | |
return audio_files | |
def vc_multi( | |
spk_item, | |
vc_input, | |
vc_output, | |
vc_transform0, | |
f0method0, | |
file_index, | |
index_rate, | |
filter_radius, | |
resample_sr, | |
rms_mix_rate, | |
protect, | |
): | |
global tgt_sr, net_g, vc, hubert_model, version, cpt | |
logs = [] | |
logs.append("Converting...") | |
yield "\n".join(logs) | |
print() | |
try: | |
if os.path.exists(vc_input): | |
folder_path = vc_input | |
extensions = [".mp3", ".wav", ".flac", ".ogg"] | |
audio_files = find_audio_files(folder_path, extensions) | |
for index, file in enumerate(audio_files, start=1): | |
audio, sr = librosa.load(os.path.join(folder_path, file), sr=16000, mono=True) | |
input_audio_path = folder_path, file | |
f0_up_key = int(vc_transform0) | |
times = [0, 0, 0] | |
if hubert_model == None: | |
load_hubert() | |
if_f0 = cpt.get("f0", 1) | |
audio_opt = vc.pipeline( | |
hubert_model, | |
net_g, | |
spk_item, | |
audio, | |
input_audio_path, | |
times, | |
f0_up_key, | |
f0method0, | |
file_index, | |
index_rate, | |
if_f0, | |
filter_radius, | |
tgt_sr, | |
resample_sr, | |
rms_mix_rate, | |
version, | |
protect, | |
f0_file=None | |
) | |
if resample_sr >= 16000 and tgt_sr != resample_sr: | |
tgt_sr = resample_sr | |
output_path = f"{os.path.join(vc_output, file)}" | |
os.makedirs(os.path.join(vc_output), exist_ok=True) | |
sf.write( | |
output_path, | |
audio_opt, | |
tgt_sr, | |
) | |
info = f"{index} / {len(audio_files)} | {file}" | |
print(info) | |
logs.append(info) | |
yield "\n".join(logs) | |
else: | |
logs.append("Folder not found or path doesn't exist.") | |
yield "\n".join(logs) | |
except: | |
info = traceback.format_exc() | |
print(info) | |
logs.append(info) | |
yield "\n".join(logs) | |
def download_audio(url, audio_provider): | |
logs = [] | |
os.makedirs("dl_audio", exist_ok=True) | |
if url == "": | |
logs.append("URL required!") | |
yield None, "\n".join(logs) | |
return None, "\n".join(logs) | |
if audio_provider == "Youtube": | |
logs.append("Downloading the audio...") | |
yield None, "\n".join(logs) | |
ydl_opts = { | |
'noplaylist': True, | |
'format': 'bestaudio/best', | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'wav', | |
}], | |
"outtmpl": 'result/dl_audio/audio', | |
} | |
audio_path = "result/dl_audio/audio.wav" | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
ydl.download([url]) | |
logs.append("Download Complete.") | |
yield audio_path, "\n".join(logs) | |
def cut_vocal_and_inst_yt(split_model): | |
logs = [] | |
logs.append("Starting the audio splitting process...") | |
yield "\n".join(logs), None, None, None | |
command = f"demucs --two-stems=vocals -n {split_model} result/dl_audio/audio.wav -o output" | |
result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True) | |
for line in result.stdout: | |
logs.append(line) | |
yield "\n".join(logs), None, None, None | |
print(result.stdout) | |
vocal = f"output/{split_model}/audio/vocals.wav" | |
inst = f"output/{split_model}/audio/no_vocals.wav" | |
logs.append("Audio splitting complete.") | |
yield "\n".join(logs), vocal, inst, vocal | |
def cut_vocal_and_inst(split_model, audio_data): | |
logs = [] | |
vocal_path = "output/result/audio.wav" | |
os.makedirs("output/result", exist_ok=True) | |
wavfile.write(vocal_path, audio_data[0], audio_data[1]) | |
logs.append("Starting the audio splitting process...") | |
yield "\n".join(logs), None, None | |
command = f"demucs --two-stems=vocals -n {split_model} {vocal_path} -o output" | |
result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True) | |
for line in result.stdout: | |
logs.append(line) | |
yield "\n".join(logs), None, None | |
print(result.stdout) | |
vocal = f"output/{split_model}/audio/vocals.wav" | |
inst = f"output/{split_model}/audio/no_vocals.wav" | |
logs.append("Audio splitting complete.") | |
yield "\n".join(logs), vocal, inst | |
def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume, split_model): | |
os.makedirs("output/result", exist_ok=True) | |
vocal_path = "output/result/output.wav" | |
output_path = "output/result/combine.mp3" | |
inst_path = f"output/{split_model}/audio/no_vocals.wav" | |
wavfile.write(vocal_path, audio_data[0], audio_data[1]) | |
command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}' | |
result = subprocess.run(command.split(), stdout=subprocess.PIPE) | |
print(result.stdout.decode()) | |
return output_path | |
def download_and_extract_models(urls): | |
logs = [] | |
os.makedirs("zips", exist_ok=True) | |
os.makedirs(os.path.join("zips", "extract"), exist_ok=True) | |
os.makedirs(os.path.join(weight_root), exist_ok=True) | |
os.makedirs(os.path.join(index_root), exist_ok=True) | |
for link in urls.splitlines(): | |
url = link.strip() | |
if not url: | |
raise gr.Error("URL Required!") | |
return "No URLs provided." | |
model_zip = urlparse(url).path.split('/')[-2] + '.zip' | |
model_zip_path = os.path.join('zips', model_zip) | |
logs.append(f"Downloading...") | |
yield "\n".join(logs) | |
if "drive.google.com" in url: | |
gdown.download(url, os.path.join("zips", "extract"), quiet=False) | |
elif "mega.nz" in url: | |
m = Mega() | |
m.download_url(url, 'zips') | |
else: | |
os.system(f"wget {url} -O {model_zip_path}") | |
logs.append(f"Extracting...") | |
yield "\n".join(logs) | |
for filename in os.listdir("zips"): | |
archived_file = os.path.join("zips", filename) | |
if filename.endswith(".zip"): | |
shutil.unpack_archive(archived_file, os.path.join("zips", "extract"), 'zip') | |
elif filename.endswith(".rar"): | |
with rarfile.RarFile(archived_file, 'r') as rar: | |
rar.extractall(os.path.join("zips", "extract")) | |
for _, dirs, files in os.walk(os.path.join("zips", "extract")): | |
logs.append(f"Searching Model and Index...") | |
yield "\n".join(logs) | |
model = False | |
index = False | |
if files: | |
for file in files: | |
if file.endswith(".pth"): | |
basename = file[:-4] | |
shutil.move(os.path.join("zips", "extract", file), os.path.join(weight_root, file)) | |
model = True | |
if file.endswith('.index') and "trained" not in file: | |
shutil.move(os.path.join("zips", "extract", file), os.path.join(index_root, file)) | |
index = True | |
else: | |
logs.append("No model in main folder.") | |
yield "\n".join(logs) | |
logs.append("Searching in subfolders...") | |
yield "\n".join(logs) | |
for sub_dir in dirs: | |
for _, _, sub_files in os.walk(os.path.join("zips", "extract", sub_dir)): | |
for file in sub_files: | |
if file.endswith(".pth"): | |
basename = file[:-4] | |
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(weight_root, file)) | |
model = True | |
if file.endswith('.index') and "trained" not in file: | |
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(index_root, file)) | |
index = True | |
shutil.rmtree(os.path.join("zips", "extract", sub_dir)) | |
if index is False: | |
logs.append("Model only file, no Index file detected.") | |
yield "\n".join(logs) | |
logs.append("Download Completed!") | |
yield "\n".join(logs) | |
logs.append("Successfully download all models! Refresh your model list to load the model") | |
yield "\n".join(logs) | |
if __name__ == '__main__': | |
app.run(debug=False, port=5000,host='0.0.0.0') |