Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- lib/data_utils.py +7 -12
- lib/losses.py +1 -0
- lib/mel_processing.py +4 -6
- lib/process_ckpt.py +113 -126
- lib/utils.py +33 -40
lib/data_utils.py
CHANGED
|
@@ -1,15 +1,10 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import traceback
|
| 3 |
-
import logging
|
| 4 |
-
|
| 5 |
-
logger = logging.getLogger(__name__)
|
| 6 |
-
|
| 7 |
import numpy as np
|
| 8 |
import torch
|
| 9 |
import torch.utils.data
|
| 10 |
|
| 11 |
-
from
|
| 12 |
-
from
|
| 13 |
|
| 14 |
|
| 15 |
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
|
@@ -43,7 +38,7 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
|
| 43 |
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text:
|
| 44 |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
| 45 |
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv])
|
| 46 |
-
lengths.append(os.path.getsize(audiopath) // (
|
| 47 |
self.audiopaths_and_text = audiopaths_and_text_new
|
| 48 |
self.lengths = lengths
|
| 49 |
|
|
@@ -113,7 +108,7 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
|
| 113 |
try:
|
| 114 |
spec = torch.load(spec_filename)
|
| 115 |
except:
|
| 116 |
-
|
| 117 |
spec = spectrogram_torch(
|
| 118 |
audio_norm,
|
| 119 |
self.filter_length,
|
|
@@ -251,7 +246,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
|
| 251 |
for audiopath, text, dv in self.audiopaths_and_text:
|
| 252 |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
| 253 |
audiopaths_and_text_new.append([audiopath, text, dv])
|
| 254 |
-
lengths.append(os.path.getsize(audiopath) // (
|
| 255 |
self.audiopaths_and_text = audiopaths_and_text_new
|
| 256 |
self.lengths = lengths
|
| 257 |
|
|
@@ -305,7 +300,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
|
| 305 |
try:
|
| 306 |
spec = torch.load(spec_filename)
|
| 307 |
except:
|
| 308 |
-
|
| 309 |
spec = spectrogram_torch(
|
| 310 |
audio_norm,
|
| 311 |
self.filter_length,
|
|
|
|
| 1 |
+
import os, traceback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
import torch.utils.data
|
| 5 |
|
| 6 |
+
from mel_processing import spectrogram_torch
|
| 7 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
| 8 |
|
| 9 |
|
| 10 |
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
|
|
|
| 38 |
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text:
|
| 39 |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
| 40 |
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv])
|
| 41 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
| 42 |
self.audiopaths_and_text = audiopaths_and_text_new
|
| 43 |
self.lengths = lengths
|
| 44 |
|
|
|
|
| 108 |
try:
|
| 109 |
spec = torch.load(spec_filename)
|
| 110 |
except:
|
| 111 |
+
print(spec_filename, traceback.format_exc())
|
| 112 |
spec = spectrogram_torch(
|
| 113 |
audio_norm,
|
| 114 |
self.filter_length,
|
|
|
|
| 246 |
for audiopath, text, dv in self.audiopaths_and_text:
|
| 247 |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
| 248 |
audiopaths_and_text_new.append([audiopath, text, dv])
|
| 249 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
| 250 |
self.audiopaths_and_text = audiopaths_and_text_new
|
| 251 |
self.lengths = lengths
|
| 252 |
|
|
|
|
| 300 |
try:
|
| 301 |
spec = torch.load(spec_filename)
|
| 302 |
except:
|
| 303 |
+
print(spec_filename, traceback.format_exc())
|
| 304 |
spec = spectrogram_torch(
|
| 305 |
audio_norm,
|
| 306 |
self.filter_length,
|
lib/losses.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
def feature_loss(fmap_r, fmap_g):
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from torch.nn import functional as F
|
| 3 |
|
| 4 |
|
| 5 |
def feature_loss(fmap_r, fmap_g):
|
lib/mel_processing.py
CHANGED
|
@@ -1,9 +1,7 @@
|
|
| 1 |
import torch
|
| 2 |
import torch.utils.data
|
| 3 |
from librosa.filters import mel as librosa_mel_fn
|
| 4 |
-
import logging
|
| 5 |
|
| 6 |
-
logger = logging.getLogger(__name__)
|
| 7 |
|
| 8 |
MAX_WAV_VALUE = 32768.0
|
| 9 |
|
|
@@ -53,10 +51,10 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
|
| 53 |
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
|
| 54 |
"""
|
| 55 |
# Validation
|
| 56 |
-
if torch.min(y) < -1.
|
| 57 |
-
|
| 58 |
-
if torch.max(y) > 1.
|
| 59 |
-
|
| 60 |
|
| 61 |
# Window - Cache if needed
|
| 62 |
global hann_window
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.utils.data
|
| 3 |
from librosa.filters import mel as librosa_mel_fn
|
|
|
|
| 4 |
|
|
|
|
| 5 |
|
| 6 |
MAX_WAV_VALUE = 32768.0
|
| 7 |
|
|
|
|
| 51 |
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
|
| 52 |
"""
|
| 53 |
# Validation
|
| 54 |
+
if torch.min(y) < -1.0:
|
| 55 |
+
print("min value is ", torch.min(y))
|
| 56 |
+
if torch.max(y) > 1.0:
|
| 57 |
+
print("max value is ", torch.max(y))
|
| 58 |
|
| 59 |
# Window - Cache if needed
|
| 60 |
global hann_window
|
lib/process_ckpt.py
CHANGED
|
@@ -1,16 +1,8 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import sys
|
| 3 |
-
import traceback
|
| 4 |
from collections import OrderedDict
|
| 5 |
|
| 6 |
-
import torch
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
i18n = I18nAuto()
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
def savee(ckpt, sr, if_f0, name, epoch, version, hps):
|
| 14 |
try:
|
| 15 |
opt = OrderedDict()
|
| 16 |
opt["weight"] = {}
|
|
@@ -18,31 +10,73 @@ def savee(ckpt, sr, if_f0, name, epoch, version, hps):
|
|
| 18 |
if "enc_q" in key:
|
| 19 |
continue
|
| 20 |
opt["weight"][key] = ckpt[key].half()
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
opt["info"] = "%sepoch" % epoch
|
| 42 |
opt["sr"] = sr
|
| 43 |
opt["f0"] = if_f0
|
| 44 |
-
opt
|
| 45 |
-
torch.save(opt, "assets/weights/%s.pth" % name)
|
| 46 |
return "Success."
|
| 47 |
except:
|
| 48 |
return traceback.format_exc()
|
|
@@ -51,17 +85,16 @@ def savee(ckpt, sr, if_f0, name, epoch, version, hps):
|
|
| 51 |
def show_info(path):
|
| 52 |
try:
|
| 53 |
a = torch.load(path, map_location="cpu")
|
| 54 |
-
return "模型信息:%s\n采样率:%s\n模型是否输入音高引导:%s
|
| 55 |
a.get("info", "None"),
|
| 56 |
a.get("sr", "None"),
|
| 57 |
a.get("f0", "None"),
|
| 58 |
-
a.get("version", "None"),
|
| 59 |
)
|
| 60 |
except:
|
| 61 |
return traceback.format_exc()
|
| 62 |
|
| 63 |
|
| 64 |
-
def extract_small_model(path, name, sr, if_f0, info
|
| 65 |
try:
|
| 66 |
ckpt = torch.load(path, map_location="cpu")
|
| 67 |
if "model" in ckpt:
|
|
@@ -94,98 +127,53 @@ def extract_small_model(path, name, sr, if_f0, info, version):
|
|
| 94 |
40000,
|
| 95 |
]
|
| 96 |
elif sr == "48k":
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
]
|
| 118 |
-
else:
|
| 119 |
-
opt["config"] = [
|
| 120 |
-
1025,
|
| 121 |
-
32,
|
| 122 |
-
192,
|
| 123 |
-
192,
|
| 124 |
-
768,
|
| 125 |
-
2,
|
| 126 |
-
6,
|
| 127 |
-
3,
|
| 128 |
-
0,
|
| 129 |
-
"1",
|
| 130 |
-
[3, 7, 11],
|
| 131 |
-
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 132 |
-
[12, 10, 2, 2],
|
| 133 |
-
512,
|
| 134 |
-
[24, 20, 4, 4],
|
| 135 |
-
109,
|
| 136 |
-
256,
|
| 137 |
-
48000,
|
| 138 |
-
]
|
| 139 |
elif sr == "32k":
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
]
|
| 161 |
-
else:
|
| 162 |
-
opt["config"] = [
|
| 163 |
-
513,
|
| 164 |
-
32,
|
| 165 |
-
192,
|
| 166 |
-
192,
|
| 167 |
-
768,
|
| 168 |
-
2,
|
| 169 |
-
6,
|
| 170 |
-
3,
|
| 171 |
-
0,
|
| 172 |
-
"1",
|
| 173 |
-
[3, 7, 11],
|
| 174 |
-
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 175 |
-
[10, 8, 2, 2],
|
| 176 |
-
512,
|
| 177 |
-
[20, 16, 4, 4],
|
| 178 |
-
109,
|
| 179 |
-
256,
|
| 180 |
-
32000,
|
| 181 |
-
]
|
| 182 |
if info == "":
|
| 183 |
info = "Extracted model."
|
| 184 |
opt["info"] = info
|
| 185 |
-
opt["version"] = version
|
| 186 |
opt["sr"] = sr
|
| 187 |
opt["f0"] = int(if_f0)
|
| 188 |
-
torch.save(opt, "
|
| 189 |
return "Success."
|
| 190 |
except:
|
| 191 |
return traceback.format_exc()
|
|
@@ -197,13 +185,13 @@ def change_info(path, info, name):
|
|
| 197 |
ckpt["info"] = info
|
| 198 |
if name == "":
|
| 199 |
name = os.path.basename(path)
|
| 200 |
-
torch.save(ckpt, "
|
| 201 |
return "Success."
|
| 202 |
except:
|
| 203 |
return traceback.format_exc()
|
| 204 |
|
| 205 |
|
| 206 |
-
def merge(path1, path2, alpha1, sr, f0, info, name
|
| 207 |
try:
|
| 208 |
|
| 209 |
def extract(ckpt):
|
|
@@ -252,10 +240,9 @@ def merge(path1, path2, alpha1, sr, f0, info, name, version):
|
|
| 252 |
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
|
| 253 |
"""
|
| 254 |
opt["sr"] = sr
|
| 255 |
-
opt["f0"] = 1 if f0 ==
|
| 256 |
-
opt["version"] = version
|
| 257 |
opt["info"] = info
|
| 258 |
-
torch.save(opt, "
|
| 259 |
return "Success."
|
| 260 |
except:
|
| 261 |
return traceback.format_exc()
|
|
|
|
| 1 |
+
import torch, traceback, os, pdb
|
|
|
|
|
|
|
| 2 |
from collections import OrderedDict
|
| 3 |
|
|
|
|
| 4 |
|
| 5 |
+
def savee(ckpt, sr, if_f0, name, epoch):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
try:
|
| 7 |
opt = OrderedDict()
|
| 8 |
opt["weight"] = {}
|
|
|
|
| 10 |
if "enc_q" in key:
|
| 11 |
continue
|
| 12 |
opt["weight"][key] = ckpt[key].half()
|
| 13 |
+
if sr == "40k":
|
| 14 |
+
opt["config"] = [
|
| 15 |
+
1025,
|
| 16 |
+
32,
|
| 17 |
+
192,
|
| 18 |
+
192,
|
| 19 |
+
768,
|
| 20 |
+
2,
|
| 21 |
+
6,
|
| 22 |
+
3,
|
| 23 |
+
0,
|
| 24 |
+
"1",
|
| 25 |
+
[3, 7, 11],
|
| 26 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 27 |
+
[10, 10, 2, 2],
|
| 28 |
+
512,
|
| 29 |
+
[16, 16, 4, 4],
|
| 30 |
+
109,
|
| 31 |
+
256,
|
| 32 |
+
40000,
|
| 33 |
+
]
|
| 34 |
+
elif sr == "48k":
|
| 35 |
+
opt["config"] = [
|
| 36 |
+
1025,
|
| 37 |
+
32,
|
| 38 |
+
192,
|
| 39 |
+
192,
|
| 40 |
+
768,
|
| 41 |
+
2,
|
| 42 |
+
6,
|
| 43 |
+
3,
|
| 44 |
+
0,
|
| 45 |
+
"1",
|
| 46 |
+
[3, 7, 11],
|
| 47 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 48 |
+
[10, 6, 2, 2, 2],
|
| 49 |
+
512,
|
| 50 |
+
[16, 16, 4, 4, 4],
|
| 51 |
+
109,
|
| 52 |
+
256,
|
| 53 |
+
48000,
|
| 54 |
+
]
|
| 55 |
+
elif sr == "32k":
|
| 56 |
+
opt["config"] = [
|
| 57 |
+
513,
|
| 58 |
+
32,
|
| 59 |
+
192,
|
| 60 |
+
192,
|
| 61 |
+
768,
|
| 62 |
+
2,
|
| 63 |
+
6,
|
| 64 |
+
3,
|
| 65 |
+
0,
|
| 66 |
+
"1",
|
| 67 |
+
[3, 7, 11],
|
| 68 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 69 |
+
[10, 4, 2, 2, 2],
|
| 70 |
+
512,
|
| 71 |
+
[16, 16, 4, 4, 4],
|
| 72 |
+
109,
|
| 73 |
+
256,
|
| 74 |
+
32000,
|
| 75 |
+
]
|
| 76 |
opt["info"] = "%sepoch" % epoch
|
| 77 |
opt["sr"] = sr
|
| 78 |
opt["f0"] = if_f0
|
| 79 |
+
torch.save(opt, "weights/%s.pth" % name)
|
|
|
|
| 80 |
return "Success."
|
| 81 |
except:
|
| 82 |
return traceback.format_exc()
|
|
|
|
| 85 |
def show_info(path):
|
| 86 |
try:
|
| 87 |
a = torch.load(path, map_location="cpu")
|
| 88 |
+
return "模型信息:%s\n采样率:%s\n模型是否输入音高引导:%s" % (
|
| 89 |
a.get("info", "None"),
|
| 90 |
a.get("sr", "None"),
|
| 91 |
a.get("f0", "None"),
|
|
|
|
| 92 |
)
|
| 93 |
except:
|
| 94 |
return traceback.format_exc()
|
| 95 |
|
| 96 |
|
| 97 |
+
def extract_small_model(path, name, sr, if_f0, info):
|
| 98 |
try:
|
| 99 |
ckpt = torch.load(path, map_location="cpu")
|
| 100 |
if "model" in ckpt:
|
|
|
|
| 127 |
40000,
|
| 128 |
]
|
| 129 |
elif sr == "48k":
|
| 130 |
+
opt["config"] = [
|
| 131 |
+
1025,
|
| 132 |
+
32,
|
| 133 |
+
192,
|
| 134 |
+
192,
|
| 135 |
+
768,
|
| 136 |
+
2,
|
| 137 |
+
6,
|
| 138 |
+
3,
|
| 139 |
+
0,
|
| 140 |
+
"1",
|
| 141 |
+
[3, 7, 11],
|
| 142 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 143 |
+
[10, 6, 2, 2, 2],
|
| 144 |
+
512,
|
| 145 |
+
[16, 16, 4, 4, 4],
|
| 146 |
+
109,
|
| 147 |
+
256,
|
| 148 |
+
48000,
|
| 149 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
elif sr == "32k":
|
| 151 |
+
opt["config"] = [
|
| 152 |
+
513,
|
| 153 |
+
32,
|
| 154 |
+
192,
|
| 155 |
+
192,
|
| 156 |
+
768,
|
| 157 |
+
2,
|
| 158 |
+
6,
|
| 159 |
+
3,
|
| 160 |
+
0,
|
| 161 |
+
"1",
|
| 162 |
+
[3, 7, 11],
|
| 163 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 164 |
+
[10, 4, 2, 2, 2],
|
| 165 |
+
512,
|
| 166 |
+
[16, 16, 4, 4, 4],
|
| 167 |
+
109,
|
| 168 |
+
256,
|
| 169 |
+
32000,
|
| 170 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
if info == "":
|
| 172 |
info = "Extracted model."
|
| 173 |
opt["info"] = info
|
|
|
|
| 174 |
opt["sr"] = sr
|
| 175 |
opt["f0"] = int(if_f0)
|
| 176 |
+
torch.save(opt, "weights/%s.pth" % name)
|
| 177 |
return "Success."
|
| 178 |
except:
|
| 179 |
return traceback.format_exc()
|
|
|
|
| 185 |
ckpt["info"] = info
|
| 186 |
if name == "":
|
| 187 |
name = os.path.basename(path)
|
| 188 |
+
torch.save(ckpt, "weights/%s" % name)
|
| 189 |
return "Success."
|
| 190 |
except:
|
| 191 |
return traceback.format_exc()
|
| 192 |
|
| 193 |
|
| 194 |
+
def merge(path1, path2, alpha1, sr, f0, info, name):
|
| 195 |
try:
|
| 196 |
|
| 197 |
def extract(ckpt):
|
|
|
|
| 240 |
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
|
| 241 |
"""
|
| 242 |
opt["sr"] = sr
|
| 243 |
+
opt["f0"] = 1 if f0 == "是" else 0
|
|
|
|
| 244 |
opt["info"] = info
|
| 245 |
+
torch.save(opt, "weights/%s.pth" % name)
|
| 246 |
return "Success."
|
| 247 |
except:
|
| 248 |
return traceback.format_exc()
|
lib/utils.py
CHANGED
|
@@ -1,15 +1,13 @@
|
|
| 1 |
-
import
|
| 2 |
import glob
|
| 3 |
-
import
|
|
|
|
| 4 |
import logging
|
| 5 |
-
import
|
| 6 |
import subprocess
|
| 7 |
-
import sys
|
| 8 |
-
import shutil
|
| 9 |
-
|
| 10 |
import numpy as np
|
| 11 |
-
import torch
|
| 12 |
from scipy.io.wavfile import read
|
|
|
|
| 13 |
|
| 14 |
MATPLOTLIB_FLAG = False
|
| 15 |
|
|
@@ -33,25 +31,22 @@ def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
|
| 33 |
try:
|
| 34 |
new_state_dict[k] = saved_state_dict[k]
|
| 35 |
if saved_state_dict[k].shape != state_dict[k].shape:
|
| 36 |
-
|
| 37 |
-
"shape-%s-mismatch
|
| 38 |
-
k,
|
| 39 |
-
state_dict[k].shape,
|
| 40 |
-
saved_state_dict[k].shape,
|
| 41 |
) #
|
| 42 |
raise KeyError
|
| 43 |
except:
|
| 44 |
# logger.info(traceback.format_exc())
|
| 45 |
-
logger.info("%s is not in the checkpoint"
|
| 46 |
new_state_dict[k] = v # 模型自带的随机值
|
| 47 |
if hasattr(model, "module"):
|
| 48 |
model.module.load_state_dict(new_state_dict, strict=False)
|
| 49 |
else:
|
| 50 |
model.load_state_dict(new_state_dict, strict=False)
|
| 51 |
-
return model
|
| 52 |
|
| 53 |
go(combd, "combd")
|
| 54 |
-
|
| 55 |
#############
|
| 56 |
logger.info("Loaded model weights")
|
| 57 |
|
|
@@ -111,16 +106,14 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
|
| 111 |
try:
|
| 112 |
new_state_dict[k] = saved_state_dict[k]
|
| 113 |
if saved_state_dict[k].shape != state_dict[k].shape:
|
| 114 |
-
|
| 115 |
-
"shape-%s-mismatch|need-%s|get-%s"
|
| 116 |
-
k,
|
| 117 |
-
state_dict[k].shape,
|
| 118 |
-
saved_state_dict[k].shape,
|
| 119 |
) #
|
| 120 |
raise KeyError
|
| 121 |
except:
|
| 122 |
# logger.info(traceback.format_exc())
|
| 123 |
-
logger.info("%s is not in the checkpoint"
|
| 124 |
new_state_dict[k] = v # 模型自带的随机值
|
| 125 |
if hasattr(model, "module"):
|
| 126 |
model.module.load_state_dict(new_state_dict, strict=False)
|
|
@@ -211,7 +204,7 @@ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
|
| 211 |
f_list = glob.glob(os.path.join(dir_path, regex))
|
| 212 |
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
| 213 |
x = f_list[-1]
|
| 214 |
-
|
| 215 |
return x
|
| 216 |
|
| 217 |
|
|
@@ -291,8 +284,8 @@ def get_hparams(init=True):
|
|
| 291 |
bs done
|
| 292 |
pretrainG、pretrainD done
|
| 293 |
卡号:os.en["CUDA_VISIBLE_DEVICES"] done
|
| 294 |
-
if_latest
|
| 295 |
-
模型:if_f0
|
| 296 |
采样率:自动选择config done
|
| 297 |
是否缓存数据集进GPU:if_cache_data_in_gpu done
|
| 298 |
|
|
@@ -301,6 +294,7 @@ def get_hparams(init=True):
|
|
| 301 |
-c不要了
|
| 302 |
"""
|
| 303 |
parser = argparse.ArgumentParser()
|
|
|
|
| 304 |
parser.add_argument(
|
| 305 |
"-se",
|
| 306 |
"--save_every_epoch",
|
|
@@ -327,16 +321,6 @@ def get_hparams(init=True):
|
|
| 327 |
parser.add_argument(
|
| 328 |
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
| 329 |
)
|
| 330 |
-
parser.add_argument(
|
| 331 |
-
"-sw",
|
| 332 |
-
"--save_every_weights",
|
| 333 |
-
type=str,
|
| 334 |
-
default="0",
|
| 335 |
-
help="save the extracted model in weights directory when saving checkpoints",
|
| 336 |
-
)
|
| 337 |
-
parser.add_argument(
|
| 338 |
-
"-v", "--version", type=str, required=True, help="model version"
|
| 339 |
-
)
|
| 340 |
parser.add_argument(
|
| 341 |
"-f0",
|
| 342 |
"--if_f0",
|
|
@@ -363,9 +347,20 @@ def get_hparams(init=True):
|
|
| 363 |
name = args.experiment_dir
|
| 364 |
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
| 365 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
config_save_path = os.path.join(experiment_dir, "config.json")
|
| 367 |
-
|
| 368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
|
| 370 |
hparams = HParams(**config)
|
| 371 |
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
|
@@ -374,13 +369,11 @@ def get_hparams(init=True):
|
|
| 374 |
hparams.total_epoch = args.total_epoch
|
| 375 |
hparams.pretrainG = args.pretrainG
|
| 376 |
hparams.pretrainD = args.pretrainD
|
| 377 |
-
hparams.version = args.version
|
| 378 |
hparams.gpus = args.gpus
|
| 379 |
hparams.train.batch_size = args.batch_size
|
| 380 |
hparams.sample_rate = args.sample_rate
|
| 381 |
hparams.if_f0 = args.if_f0
|
| 382 |
hparams.if_latest = args.if_latest
|
| 383 |
-
hparams.save_every_weights = args.save_every_weights
|
| 384 |
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
| 385 |
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
|
| 386 |
return hparams
|
|
@@ -409,7 +402,7 @@ def get_hparams_from_file(config_path):
|
|
| 409 |
def check_git_hash(model_dir):
|
| 410 |
source_dir = os.path.dirname(os.path.realpath(__file__))
|
| 411 |
if not os.path.exists(os.path.join(source_dir, ".git")):
|
| 412 |
-
logger.
|
| 413 |
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
| 414 |
source_dir
|
| 415 |
)
|
|
@@ -422,7 +415,7 @@ def check_git_hash(model_dir):
|
|
| 422 |
if os.path.exists(path):
|
| 423 |
saved_hash = open(path).read()
|
| 424 |
if saved_hash != cur_hash:
|
| 425 |
-
logger.
|
| 426 |
"git hash values are different. {}(saved) != {}(current)".format(
|
| 427 |
saved_hash[:8], cur_hash[:8]
|
| 428 |
)
|
|
|
|
| 1 |
+
import os, traceback
|
| 2 |
import glob
|
| 3 |
+
import sys
|
| 4 |
+
import argparse
|
| 5 |
import logging
|
| 6 |
+
import json
|
| 7 |
import subprocess
|
|
|
|
|
|
|
|
|
|
| 8 |
import numpy as np
|
|
|
|
| 9 |
from scipy.io.wavfile import read
|
| 10 |
+
import torch
|
| 11 |
|
| 12 |
MATPLOTLIB_FLAG = False
|
| 13 |
|
|
|
|
| 31 |
try:
|
| 32 |
new_state_dict[k] = saved_state_dict[k]
|
| 33 |
if saved_state_dict[k].shape != state_dict[k].shape:
|
| 34 |
+
print(
|
| 35 |
+
"shape-%s-mismatch|need-%s|get-%s"
|
| 36 |
+
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
|
|
|
|
|
|
| 37 |
) #
|
| 38 |
raise KeyError
|
| 39 |
except:
|
| 40 |
# logger.info(traceback.format_exc())
|
| 41 |
+
logger.info("%s is not in the checkpoint" % k) # pretrain缺失的
|
| 42 |
new_state_dict[k] = v # 模型自带的随机值
|
| 43 |
if hasattr(model, "module"):
|
| 44 |
model.module.load_state_dict(new_state_dict, strict=False)
|
| 45 |
else:
|
| 46 |
model.load_state_dict(new_state_dict, strict=False)
|
|
|
|
| 47 |
|
| 48 |
go(combd, "combd")
|
| 49 |
+
go(sbd, "sbd")
|
| 50 |
#############
|
| 51 |
logger.info("Loaded model weights")
|
| 52 |
|
|
|
|
| 106 |
try:
|
| 107 |
new_state_dict[k] = saved_state_dict[k]
|
| 108 |
if saved_state_dict[k].shape != state_dict[k].shape:
|
| 109 |
+
print(
|
| 110 |
+
"shape-%s-mismatch|need-%s|get-%s"
|
| 111 |
+
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
|
|
|
|
|
|
| 112 |
) #
|
| 113 |
raise KeyError
|
| 114 |
except:
|
| 115 |
# logger.info(traceback.format_exc())
|
| 116 |
+
logger.info("%s is not in the checkpoint" % k) # pretrain缺失的
|
| 117 |
new_state_dict[k] = v # 模型自带的随机值
|
| 118 |
if hasattr(model, "module"):
|
| 119 |
model.module.load_state_dict(new_state_dict, strict=False)
|
|
|
|
| 204 |
f_list = glob.glob(os.path.join(dir_path, regex))
|
| 205 |
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
| 206 |
x = f_list[-1]
|
| 207 |
+
print(x)
|
| 208 |
return x
|
| 209 |
|
| 210 |
|
|
|
|
| 284 |
bs done
|
| 285 |
pretrainG、pretrainD done
|
| 286 |
卡号:os.en["CUDA_VISIBLE_DEVICES"] done
|
| 287 |
+
if_latest todo
|
| 288 |
+
模型:if_f0 todo
|
| 289 |
采样率:自动选择config done
|
| 290 |
是否缓存数据集进GPU:if_cache_data_in_gpu done
|
| 291 |
|
|
|
|
| 294 |
-c不要了
|
| 295 |
"""
|
| 296 |
parser = argparse.ArgumentParser()
|
| 297 |
+
# parser.add_argument('-c', '--config', type=str, default="configs/40k.json",help='JSON file for configuration')
|
| 298 |
parser.add_argument(
|
| 299 |
"-se",
|
| 300 |
"--save_every_epoch",
|
|
|
|
| 321 |
parser.add_argument(
|
| 322 |
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
| 323 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
parser.add_argument(
|
| 325 |
"-f0",
|
| 326 |
"--if_f0",
|
|
|
|
| 347 |
name = args.experiment_dir
|
| 348 |
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
| 349 |
|
| 350 |
+
if not os.path.exists(experiment_dir):
|
| 351 |
+
os.makedirs(experiment_dir)
|
| 352 |
+
|
| 353 |
+
config_path = "configs/%s.json" % args.sample_rate
|
| 354 |
config_save_path = os.path.join(experiment_dir, "config.json")
|
| 355 |
+
if init:
|
| 356 |
+
with open(config_path, "r") as f:
|
| 357 |
+
data = f.read()
|
| 358 |
+
with open(config_save_path, "w") as f:
|
| 359 |
+
f.write(data)
|
| 360 |
+
else:
|
| 361 |
+
with open(config_save_path, "r") as f:
|
| 362 |
+
data = f.read()
|
| 363 |
+
config = json.loads(data)
|
| 364 |
|
| 365 |
hparams = HParams(**config)
|
| 366 |
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
|
|
|
| 369 |
hparams.total_epoch = args.total_epoch
|
| 370 |
hparams.pretrainG = args.pretrainG
|
| 371 |
hparams.pretrainD = args.pretrainD
|
|
|
|
| 372 |
hparams.gpus = args.gpus
|
| 373 |
hparams.train.batch_size = args.batch_size
|
| 374 |
hparams.sample_rate = args.sample_rate
|
| 375 |
hparams.if_f0 = args.if_f0
|
| 376 |
hparams.if_latest = args.if_latest
|
|
|
|
| 377 |
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
| 378 |
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
|
| 379 |
return hparams
|
|
|
|
| 402 |
def check_git_hash(model_dir):
|
| 403 |
source_dir = os.path.dirname(os.path.realpath(__file__))
|
| 404 |
if not os.path.exists(os.path.join(source_dir, ".git")):
|
| 405 |
+
logger.warn(
|
| 406 |
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
| 407 |
source_dir
|
| 408 |
)
|
|
|
|
| 415 |
if os.path.exists(path):
|
| 416 |
saved_hash = open(path).read()
|
| 417 |
if saved_hash != cur_hash:
|
| 418 |
+
logger.warn(
|
| 419 |
"git hash values are different. {}(saved) != {}(current)".format(
|
| 420 |
saved_hash[:8], cur_hash[:8]
|
| 421 |
)
|