import torch, os, traceback, sys, warnings, shutil, numpy as np import gradio as gr import librosa import asyncio import rarfile import edge_tts import yt_dlp import ffmpeg import gdown import subprocess import wave import soundfile as sf from scipy.io import wavfile from datetime import datetime from urllib.parse import urlparse from mega import Mega from flask import Flask, request, jsonify app = Flask(__name__) now_dir = os.getcwd() tmp = os.path.join(now_dir, "TEMP") shutil.rmtree(tmp, ignore_errors=True) os.makedirs(tmp, exist_ok=True) os.environ["TEMP"] = tmp from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) from fairseq import checkpoint_utils from vc_infer_pipeline import VC from config import Config config = Config() tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list] hubert_model = None f0method_mode = ["pm", "harvest", "crepe"] f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)" if os.path.isfile("rmvpe.pt"): f0method_mode.insert(2, "rmvpe") f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)" def load_hubert(): global hubert_model models, _, _ = checkpoint_utils.load_model_ensemble_and_task( ["hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() hubert_model.eval() load_hubert() weight_root = "weights" index_root = "weights/index" weights_model = [] weights_index = [] for _, _, model_files in os.walk(weight_root): for file in model_files: if file.endswith(".pth"): weights_model.append(file) for _, _, index_files in os.walk(index_root): for file in index_files: if file.endswith('.index') and "trained" not in file: weights_index.append(os.path.join(index_root, file)) def check_models(): weights_model = [] weights_index = [] for _, _, model_files in os.walk(weight_root): for file in model_files: if file.endswith(".pth"): weights_model.append(file) for _, _, index_files in os.walk(index_root): for file in index_files: if file.endswith('.index') and "trained" not in file: weights_index.append(os.path.join(index_root, file)) return ( gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]), gr.Dropdown.update(choices=sorted(weights_index)) ) def clean(): return ( gr.Dropdown.update(value=""), gr.Slider.update(visible=False) ) @app.route('/convert_voice', methods=['POST']) def api_convert_voice(): data = request.json spk_id = data['spk_id'] input_audio_path = data['input_audio_path'] voice_transform = data['voice_transform'] print(spk_id) output_path = convert_voice(spk_id, input_audio_path, voice_transform) print(output_path) return jsonify({"output_audio_path": output_path}) def convert_voice(spk_id, input_audio_path, voice_transform): get_vc(spk_id,0.5) output_audio_path = vc_single( sid=spk_id, input_audio_path=input_audio_path, f0_up_key=voice_transform, # Assuming voice_transform corresponds to f0_up_key f0_file=None , f0_method="rmvpe", file_index=None, # Assuming file_index_path corresponds to file_index index_rate=0.75, filter_radius=3, resample_sr=0, rms_mix_rate=0.25, protect=0.33 # Adjusted from protect_rate to protect to match the function signature ) print(output_audio_path) return output_audio_path def vc_single( sid, input_audio_path, f0_up_key, f0_file, f0_method, file_index, index_rate, filter_radius, resample_sr, rms_mix_rate, protect ): # spk_item, input_audio0, vc_transform0,f0_file,f0method0 global tgt_sr, net_g, vc, hubert_model, version, cpt try: logs = [] print(f"Converting...") audio, sr = librosa.load(input_audio_path, sr=16000, mono=True) f0_up_key = int(f0_up_key) times = [0, 0, 0] if hubert_model == None: load_hubert() if_f0 = 1 audio_opt = vc.pipeline( hubert_model, net_g, sid, audio, input_audio_path, times, f0_up_key, f0_method, file_index, # file_big_npy, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, f0_file=f0_file ) if resample_sr >= 16000 and tgt_sr != resample_sr: tgt_sr = resample_sr index_info = ( "Using index:%s." % file_index if os.path.exists(file_index) else "Index not used." ) print("writing to FS") output_file_path = os.path.join("output", f"converted_audio_{sid}.wav") # Adjust path as needed os.makedirs(os.path.dirname(output_file_path), exist_ok=True) # Create the output directory if it doesn't exist print("create dir") # Save the audio file using the target sampling rate sf.write(output_file_path, audio_opt, tgt_sr) print("wrote to FS") # Return the path to the saved file along with any other information return ( f"Success. Audio saved to {output_file_path}\n{index_info}\nTime:\nnpy: %.2fs, f0: %.2fs, infer: %.2fs." % (*times,), output_file_path, ) except: info = traceback.format_exc() return info, (None, None) def get_vc(sid, to_return_protect0): global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index if sid == "" or sid == []: global hubert_model if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 print("clean_empty_cache") del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None if torch.cuda.is_available(): torch.cuda.empty_cache() ###楼下不这么折腾清理不干净 if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del net_g, cpt if torch.cuda.is_available(): torch.cuda.empty_cache() cpt = None return ( gr.Slider.update(maximum=2333, visible=False), gr.Slider.update(visible=True), gr.Dropdown.update(choices=sorted(weights_index), value=""), gr.Markdown.update(value="#
No model selected") ) print(f"Loading {sid} model...") selected_model = sid[:-4] cpt = torch.load(os.path.join(weight_root, sid), map_location="cpu") tgt_sr = cpt["config"][-1] cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] if_f0 = cpt.get("f0", 1) if if_f0 == 0: to_return_protect0 = { "visible": False, "value": 0.5, "__type__": "update", } else: to_return_protect0 = { "visible": True, "value": to_return_protect0, "__type__": "update", } version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del net_g.enc_q print(net_g.load_state_dict(cpt["weight"], strict=False)) net_g.eval().to(config.device) if config.is_half: net_g = net_g.half() else: net_g = net_g.float() vc = VC(tgt_sr, config) n_spk = cpt["config"][-3] weights_index = [] for _, _, index_files in os.walk(index_root): for file in index_files: if file.endswith('.index') and "trained" not in file: weights_index.append(os.path.join(index_root, file)) if weights_index == []: selected_index = gr.Dropdown.update(value="") else: selected_index = gr.Dropdown.update(value=weights_index[0]) for index, model_index in enumerate(weights_index): if selected_model in model_index: selected_index = gr.Dropdown.update(value=weights_index[index]) break return ( gr.Slider.update(maximum=n_spk, visible=True), to_return_protect0, selected_index, gr.Markdown.update( f'##
{selected_model}\n'+ f'###
RVC {version} Model' ) ) def find_audio_files(folder_path, extensions): audio_files = [] for root, dirs, files in os.walk(folder_path): for file in files: if any(file.endswith(ext) for ext in extensions): audio_files.append(file) return audio_files def vc_multi( spk_item, vc_input, vc_output, vc_transform0, f0method0, file_index, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, ): global tgt_sr, net_g, vc, hubert_model, version, cpt logs = [] logs.append("Converting...") yield "\n".join(logs) print() try: if os.path.exists(vc_input): folder_path = vc_input extensions = [".mp3", ".wav", ".flac", ".ogg"] audio_files = find_audio_files(folder_path, extensions) for index, file in enumerate(audio_files, start=1): audio, sr = librosa.load(os.path.join(folder_path, file), sr=16000, mono=True) input_audio_path = folder_path, file f0_up_key = int(vc_transform0) times = [0, 0, 0] if hubert_model == None: load_hubert() if_f0 = cpt.get("f0", 1) audio_opt = vc.pipeline( hubert_model, net_g, spk_item, audio, input_audio_path, times, f0_up_key, f0method0, file_index, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, f0_file=None ) if resample_sr >= 16000 and tgt_sr != resample_sr: tgt_sr = resample_sr output_path = f"{os.path.join(vc_output, file)}" os.makedirs(os.path.join(vc_output), exist_ok=True) sf.write( output_path, audio_opt, tgt_sr, ) info = f"{index} / {len(audio_files)} | {file}" print(info) logs.append(info) yield "\n".join(logs) else: logs.append("Folder not found or path doesn't exist.") yield "\n".join(logs) except: info = traceback.format_exc() print(info) logs.append(info) yield "\n".join(logs) def download_audio(url, audio_provider): logs = [] os.makedirs("dl_audio", exist_ok=True) if url == "": logs.append("URL required!") yield None, "\n".join(logs) return None, "\n".join(logs) if audio_provider == "Youtube": logs.append("Downloading the audio...") yield None, "\n".join(logs) ydl_opts = { 'noplaylist': True, 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav', }], "outtmpl": 'result/dl_audio/audio', } audio_path = "result/dl_audio/audio.wav" with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download([url]) logs.append("Download Complete.") yield audio_path, "\n".join(logs) def cut_vocal_and_inst_yt(split_model): logs = [] logs.append("Starting the audio splitting process...") yield "\n".join(logs), None, None, None command = f"demucs --two-stems=vocals -n {split_model} result/dl_audio/audio.wav -o output" result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True) for line in result.stdout: logs.append(line) yield "\n".join(logs), None, None, None print(result.stdout) vocal = f"output/{split_model}/audio/vocals.wav" inst = f"output/{split_model}/audio/no_vocals.wav" logs.append("Audio splitting complete.") yield "\n".join(logs), vocal, inst, vocal def cut_vocal_and_inst(split_model, audio_data): logs = [] vocal_path = "output/result/audio.wav" os.makedirs("output/result", exist_ok=True) wavfile.write(vocal_path, audio_data[0], audio_data[1]) logs.append("Starting the audio splitting process...") yield "\n".join(logs), None, None command = f"demucs --two-stems=vocals -n {split_model} {vocal_path} -o output" result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True) for line in result.stdout: logs.append(line) yield "\n".join(logs), None, None print(result.stdout) vocal = f"output/{split_model}/audio/vocals.wav" inst = f"output/{split_model}/audio/no_vocals.wav" logs.append("Audio splitting complete.") yield "\n".join(logs), vocal, inst def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume, split_model): os.makedirs("output/result", exist_ok=True) vocal_path = "output/result/output.wav" output_path = "output/result/combine.mp3" inst_path = f"output/{split_model}/audio/no_vocals.wav" wavfile.write(vocal_path, audio_data[0], audio_data[1]) command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}' result = subprocess.run(command.split(), stdout=subprocess.PIPE) print(result.stdout.decode()) return output_path def download_and_extract_models(urls): logs = [] os.makedirs("zips", exist_ok=True) os.makedirs(os.path.join("zips", "extract"), exist_ok=True) os.makedirs(os.path.join(weight_root), exist_ok=True) os.makedirs(os.path.join(index_root), exist_ok=True) for link in urls.splitlines(): url = link.strip() if not url: raise gr.Error("URL Required!") return "No URLs provided." model_zip = urlparse(url).path.split('/')[-2] + '.zip' model_zip_path = os.path.join('zips', model_zip) logs.append(f"Downloading...") yield "\n".join(logs) if "drive.google.com" in url: gdown.download(url, os.path.join("zips", "extract"), quiet=False) elif "mega.nz" in url: m = Mega() m.download_url(url, 'zips') else: os.system(f"wget {url} -O {model_zip_path}") logs.append(f"Extracting...") yield "\n".join(logs) for filename in os.listdir("zips"): archived_file = os.path.join("zips", filename) if filename.endswith(".zip"): shutil.unpack_archive(archived_file, os.path.join("zips", "extract"), 'zip') elif filename.endswith(".rar"): with rarfile.RarFile(archived_file, 'r') as rar: rar.extractall(os.path.join("zips", "extract")) for _, dirs, files in os.walk(os.path.join("zips", "extract")): logs.append(f"Searching Model and Index...") yield "\n".join(logs) model = False index = False if files: for file in files: if file.endswith(".pth"): basename = file[:-4] shutil.move(os.path.join("zips", "extract", file), os.path.join(weight_root, file)) model = True if file.endswith('.index') and "trained" not in file: shutil.move(os.path.join("zips", "extract", file), os.path.join(index_root, file)) index = True else: logs.append("No model in main folder.") yield "\n".join(logs) logs.append("Searching in subfolders...") yield "\n".join(logs) for sub_dir in dirs: for _, _, sub_files in os.walk(os.path.join("zips", "extract", sub_dir)): for file in sub_files: if file.endswith(".pth"): basename = file[:-4] shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(weight_root, file)) model = True if file.endswith('.index') and "trained" not in file: shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(index_root, file)) index = True shutil.rmtree(os.path.join("zips", "extract", sub_dir)) if index is False: logs.append("Model only file, no Index file detected.") yield "\n".join(logs) logs.append("Download Completed!") yield "\n".join(logs) logs.append("Successfully download all models! Refresh your model list to load the model") yield "\n".join(logs) if __name__ == '__main__': app.run(debug=False, port=5000,host='0.0.0.0')