m-ric HF Staff commited on
Commit
09ce891
·
1 Parent(s): ad64912

RRemove old QwenModel

Browse files
Files changed (1) hide show
  1. e2bqwen.py +1 -166
e2bqwen.py CHANGED
@@ -411,7 +411,7 @@ class E2BVisionAgent(CodeAgent):
411
  and previous_memory_step.step_number == current_step - 1
412
  ):
413
  if previous_memory_step.tool_calls[0].arguments == memory_step.tool_calls[0].arguments:
414
- memory_step.observations += "\nWARNING: You've executed the same action several times in a row. MAKE SURE TO NOT USELESSLY REPEAT ACTIONS."
415
 
416
  # Add to the current memory step
417
  memory_step.observations_images = [image.copy()]
@@ -471,168 +471,3 @@ class QwenVLAPIModel(Model):
471
  return message
472
  except Exception as e:
473
  raise Exception(f"Both endpoints failed. Last error: {e}")
474
-
475
- # class QwenVLAPIModel(Model):
476
- # """Model wrapper for Qwen2.5VL API with fallback mechanism"""
477
-
478
- # def __init__(
479
- # self,
480
- # model_path: str = "Qwen/Qwen2.5-VL-72B-Instruct",
481
- # provider: str = "hyperbolic",
482
- # hf_token: str = None,
483
- # hf_base_url: str = "https://n5wr7lfx6wp94tvl.us-east-1.aws.endpoints.huggingface.cloud"
484
- # ):
485
- # super().__init__()
486
- # self.model_path = model_path
487
- # self.model_id = model_path
488
- # self.provider = provider
489
- # self.hf_token = hf_token
490
- # self.hf_base_url = hf_base_url
491
-
492
- # # Initialize hyperbolic client
493
- # self.hyperbolic_client = InferenceClient(
494
- # provider=self.provider,
495
- # )
496
-
497
- # assert not self.hf_base_url.endswith("/v1/"), "Enter your base url without '/v1/' suffix."
498
-
499
- # # Initialize HF OpenAI-compatible client if token is provided
500
- # self.hf_client = None
501
- # from openai import OpenAI
502
- # self.hf_client = OpenAI(
503
- # base_url=self.hf_base_url + "/v1/",
504
- # api_key=self.hf_token
505
- # )
506
-
507
- # def __call__(
508
- # self,
509
- # messages: List[Dict[str, Any]],
510
- # stop_sequences: Optional[List[str]] = None,
511
- # **kwargs
512
- # ) -> ChatMessage:
513
- # """Convert a list of messages to an API request with fallback mechanism"""
514
-
515
- # # Format messages once for both APIs
516
- # formatted_messages = self._format_messages(messages)
517
-
518
- # # First try the HF endpoint if available - THIS ALWAYS FAILS SO SKIPPING
519
- # try:
520
- # completion = self._call_hf_endpoint(
521
- # formatted_messages,
522
- # stop_sequences,
523
- # **kwargs
524
- # )
525
- # print("SUCCESSFUL call of inference endpoint")
526
- # return ChatMessage(role=MessageRole.ASSISTANT, content=completion)
527
- # except Exception as e:
528
- # print(f"HF endpoint failed with error: {e}. Falling back to hyperbolic.")
529
- # # Continue to fallback
530
-
531
- # # Fallback to hyperbolic
532
- # try:
533
- # return self._call_hyperbolic(formatted_messages, stop_sequences, **kwargs)
534
- # except Exception as e:
535
- # raise Exception(f"Both endpoints failed. Last error: {e}")
536
-
537
- # def _format_messages(self, messages: List[Dict[str, Any]]):
538
- # """Format messages for API requests - works for both endpoints"""
539
-
540
- # formatted_messages = []
541
-
542
- # for msg in messages:
543
- # role = msg["role"]
544
- # content = []
545
-
546
- # if isinstance(msg["content"], list):
547
- # for item in msg["content"]:
548
- # if item["type"] == "text":
549
- # content.append({"type": "text", "text": item["text"]})
550
- # elif item["type"] == "image":
551
- # # Handle image path or direct image object
552
- # if isinstance(item["image"], str):
553
- # # Image is a path
554
- # with open(item["image"], "rb") as image_file:
555
- # base64_image = base64.b64encode(image_file.read()).decode("utf-8")
556
- # else:
557
- # # Image is a PIL image or similar object
558
- # img_byte_arr = BytesIO()
559
- # base64_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
560
-
561
- # content.append({
562
- # "type": "image_url",
563
- # "image_url": {
564
- # "url": f"data:image/png;base64,{base64_image}"
565
- # }
566
- # })
567
- # else:
568
- # # Plain text message
569
- # content = [{"type": "text", "text": msg["content"]}]
570
-
571
- # formatted_messages.append({"role": role, "content": content})
572
-
573
- # return formatted_messages
574
-
575
- # def _call_hf_endpoint(self, formatted_messages, stop_sequences=None, **kwargs):
576
- # """Call the Hugging Face OpenAI-compatible endpoint"""
577
-
578
- # # Extract parameters with defaults
579
- # max_tokens = kwargs.get("max_new_tokens", 4096)
580
- # temperature = kwargs.get("temperature", 0.7)
581
- # top_p = kwargs.get("top_p", 0.9)
582
- # stream = kwargs.get("stream", False)
583
-
584
- # completion = self.hf_client.chat.completions.create(
585
- # model="tgi", # Model name for the endpoint
586
- # messages=formatted_messages,
587
- # max_tokens=max_tokens,
588
- # temperature=temperature,
589
- # top_p=top_p,
590
- # stream=stream,
591
- # stop=stop_sequences
592
- # )
593
-
594
- # if stream:
595
- # # For streaming responses, return a generator
596
- # def stream_generator():
597
- # for chunk in completion:
598
- # yield chunk.choices[0].delta.content or ""
599
- # return stream_generator()
600
- # else:
601
- # # For non-streaming, return the full text
602
- # return completion.choices[0].message.content
603
-
604
- # def _call_hyperbolic(self, formatted_messages, stop_sequences=None, **kwargs):
605
- # """Call the hyperbolic API"""
606
-
607
- # completion = self.hyperbolic_client.chat.completions.create(
608
- # model=self.model_path,
609
- # messages=formatted_messages,
610
- # max_tokens=kwargs.get("max_new_tokens", 4096),
611
- # temperature=kwargs.get("temperature", 0.7),
612
- # top_p=kwargs.get("top_p", 0.9),
613
- # stop=stop_sequences
614
- # )
615
-
616
- # # Extract the response text
617
- # output_text = completion.choices[0].message.content
618
-
619
- # return ChatMessage(role=MessageRole.ASSISTANT, content=output_text)
620
-
621
- # def to_dict(self) -> Dict[str, Any]:
622
- # """Convert the model to a dictionary"""
623
- # return {
624
- # "class": self.__class__.__name__,
625
- # "model_path": self.model_path,
626
- # "provider": self.provider,
627
- # "hf_base_url": self.hf_base_url,
628
- # # We don't save the API keys for security reasons
629
- # }
630
-
631
- # @classmethod
632
- # def from_dict(cls, data: Dict[str, Any]) -> "QwenVLAPIModel":
633
- # """Create a model from a dictionary"""
634
- # return cls(
635
- # model_path=data.get("model_path", "Qwen/Qwen2.5-VL-72B-Instruct"),
636
- # provider=data.get("provider", "hyperbolic"),
637
- # hf_base_url=data.get("hf_base_url", "https://s41ydkv0iyjeokyj.us-east-1.aws.endpoints.huggingface.cloud"),
638
- # )
 
411
  and previous_memory_step.step_number == current_step - 1
412
  ):
413
  if previous_memory_step.tool_calls[0].arguments == memory_step.tool_calls[0].arguments:
414
+ memory_step.observations += "\nWARNING: You've executed the same action several times in a row. MAKE SURE TO NOT UNNECESSARILY REPEAT ACTIONS."
415
 
416
  # Add to the current memory step
417
  memory_step.observations_images = [image.copy()]
 
471
  return message
472
  except Exception as e:
473
  raise Exception(f"Both endpoints failed. Last error: {e}")