import os import time import base64 from io import BytesIO from textwrap import dedent from typing import Any, Dict, List, Optional, Tuple import json # HF API params from huggingface_hub import InferenceClient # E2B imports from e2b_desktop import Sandbox from PIL import Image # SmolaAgents imports from smolagents import CodeAgent, tool, HfApiModel from smolagents.memory import ActionStep from smolagents.models import ChatMessage, MessageRole, Model from smolagents.monitoring import LogLevel class E2BVisionAgent(CodeAgent): """Agent for e2b desktop automation with Qwen2.5VL vision capabilities""" def __init__( self, model: HfApiModel, data_dir: str, desktop: Sandbox, tools: List[tool] = None, max_steps: int = 200, verbosity_level: LogLevel = 4, planning_interval: int = 15, **kwargs ): self.desktop = desktop self.data_dir = data_dir self.planning_interval = planning_interval # Initialize Desktop self.width, self.height = self.desktop.get_screen_size() print(f"Screen size: {self.width}x{self.height}") # Set up temp directory os.makedirs(self.data_dir, exist_ok=True) print(f"Screenshots and steps will be saved to: {self.data_dir}") print(f"Verbosity level set to {verbosity_level}") # Initialize base agent super().__init__( tools=tools or [], model=model, max_steps=max_steps, verbosity_level=verbosity_level, planning_interval = self.planning_interval, **kwargs ) # Add screen info to state self.state["screen_width"] = self.width self.state["screen_height"] = self.height # Add default tools self._setup_desktop_tools() self.step_callbacks.append(self.take_snapshot_callback) def initialize_system_prompt(self): return """You are a desktop automation assistant that can control a remote desktop environment. You only have access to the following tools to interact with the desktop, no additional ones: - click(x, y): Performs a left-click at the specified coordinates - right_click(x, y): Performs a right-click at the specified coordinates - double_click(x, y): Performs a double-click at the specified coordinates - move_mouse(x, y): Moves the mouse cursor to the specified coordinates - type_text(text): Types the specified text at the current cursor position - press_key(key): Presses a keyboard key (e.g., "Return", "tab", "ctrl+c") - scroll(direction, amount): Scrolls a website in a browser or a document (direction can be "up" or "down", a common amount is 1 or 2 scroll("down",1) ). DO NOT use scroll to move through linux desktop menus. - wait(seconds): Waits for the specified number of seconds. Very useful in case the prior order is still executing (for example starting very heavy applications like browsers or office apps) - open_url(url): Directly opens a browser with the specified url, saves time compared to clicking in a browser and going through the initial setup wizard. - final_answer("YOUR FINAL ANSWER TEXT"): Announces that the task requested is completed and provides a final text The desktop has a resolution of {resolution_x}x{resolution_y}. IMPORTANT: - Remember the tools that you have as those can save you time, for example open_url to enter a website rather than searching for the browser in the OS. - Whenever you click, MAKE SURE to click in the middle of the button, text, link or any other clickable element. Not under, not on the side. IN THE MIDDLE. In menus it is always better to click in the middle of the text rather than in the tiny icon. Calculate extremelly well the coordinates. A mistake here can make the full task fail. - To navigate the desktop you should open menus and click. Menus usually expand with more options, the tiny triangle next to some text in a menu means that menu expands. For example in Office in the Applications menu expands showing presentation or writing applications. - Always analyze the latest screenshot carefully before performing actions. If you clicked somewhere in the previous action and in the screenshot nothing happened, make sure the mouse is where it should be. Otherwise you can see that the coordinates were wrong. You must proceed step by step: 1. Understand the task thoroughly 2. Break down the task into logical steps 3. For each step: a. Analyze the current screenshot to identify UI elements b. Plan the appropriate action with precise coordinates c. Execute ONE action at a time using the proper tool d. Wait for the action to complete before proceeding After each action, you'll receive an updated screenshot. Review it carefully before your next action. COMMAND FORMAT: Always format your actions as Python code blocks. For example: ```python click(250, 300) ``` TASK EXAMPLE: For a task like "Open a text editor and type 'Hello World'": 1- First, analyze the screenshot to find the Applications menu and click on it being very precise, clicking in the middle of the text 'Applications': ```python click(50, 10) ``` 2- Remembering that menus are navigated through clicking, after analyzing the screenshot with the applications menu open we see that a notes application probably fits in the Accessories section (we see it is a section in the menu thanks to the tiny white triangle after the text accessories). We look for Accessories and click on it being very precise, clicking in the middle of the text 'Accessories'. DO NOT try to move through the menus with scroll, it won't work: ```python click(76, 195) ``` 3- Remembering that menus are navigated through clicking, after analyzing the screenshot with the submenu Accessories open, look for 'Text Editor' and click on it being very precise, clicking in the middle of the text 'Text Editor': ```python click(241, 441) ``` 4- Once Notepad is open, type the requested text: ```python type_text("Hello World") ``` 5- Task is completed: ```python final_answer("Done") ``` Remember to: Always wait for appropriate loading times Use precise coordinates based on the current screenshot Execute one action at a time Verify the result before proceeding to the next step Use click to move through menus on the desktop and scroll for web and specific applications. REMEMBER TO ALWAYS CLICK IN THE MIDDLE OF THE TEXT, NOT ON THE SIDE, NOT UNDER. """.format(resolution_x=self.width, resolution_y=self.height) def _setup_desktop_tools(self): """Register all desktop tools""" @tool def click(x: int, y: int) -> str: """ Performs a left-click at the specified coordinates Args: x: The x coordinate (horizontal position) y: The y coordinate (vertical position) """ self.desktop.move_mouse(x, y) self.desktop.left_click() return f"Clicked at coordinates ({x}, {y})" @tool def right_click(x: int, y: int) -> str: """ Performs a right-click at the specified coordinates Args: x: The x coordinate (horizontal position) y: The y coordinate (vertical position) """ self.desktop.move_mouse(x, y) self.desktop.right_click() return f"Right-clicked at coordinates ({x}, {y})" @tool def double_click(x: int, y: int) -> str: """ Performs a double-click at the specified coordinates Args: x: The x coordinate (horizontal position) y: The y coordinate (vertical position) """ self.desktop.move_mouse(x, y) self.desktop.double_click() return f"Double-clicked at coordinates ({x}, {y})" @tool def move_mouse(x: int, y: int) -> str: """ Moves the mouse cursor to the specified coordinates Args: x: The x coordinate (horizontal position) y: The y coordinate (vertical position) """ self.desktop.move_mouse(x, y) return f"Moved mouse to coordinates ({x}, {y})" @tool def type_text(text: str, delay_in_ms: int = 75) -> str: """ Types the specified text at the current cursor position Args: text: The text to type delay_in_ms: Delay between keystrokes in milliseconds """ self.desktop.write(text, delay_in_ms=delay_in_ms) return f"Typed text: '{text}'" @tool def press_key(key: str) -> str: """ Presses a keyboard key Args: key: The key to press (e.g., "Return", "tab", "ctrl+c") """ if key == "enter": key = "Return" self.desktop.press(key) return f"Pressed key: {key}" @tool def go_back() -> str: """ Goes back to the previous page in the browser. Args: """ self.desktop.press(["alt", "left"]) return "Went back one page" @tool def scroll(direction: str = "down", amount: int = 1) -> str: """ Scrolls the page Args: direction: The direction to scroll ("up" or "down"), defaults to "down" amount: The amount to scroll. A good amount is 1 or 2. """ self.desktop.scroll(direction=direction, amount=amount) return f"Scrolled {direction} by {amount}" @tool def wait(seconds: float) -> str: """ Waits for the specified number of seconds Args: seconds: Number of seconds to wait """ time.sleep(seconds) return f"Waited for {seconds} seconds" @tool def open_url(url: str) -> str: """ Opens the specified URL in the default browser Args: url: The URL to open """ # Make sure URL has http/https prefix if not url.startswith(("http://", "https://")): url = "https://" + url self.desktop.open(url) # Give it time to load time.sleep(2) return f"Opened URL: {url}" # Register the tools self.tools["click"] = click self.tools["right_click"] = right_click self.tools["double_click"] = double_click self.tools["move_mouse"] = move_mouse self.tools["type_text"] = type_text self.tools["press_key"] = press_key self.tools["scroll"] = scroll self.tools["wait"] = wait self.tools["open_url"] = open_url self.tools["go_back"] = go_back def store_metadata_to_file(self, agent) -> None: metadata_path = os.path.join(self.data_dir, "metadata.json") output = {} output_memory = self.write_memory_to_messages() a = open(metadata_path,"w") a.write(json.dumps(output_memory)) a.close() def write_memory_to_messages(self, summary_mode: Optional[bool] = False) -> List[Dict[str, Any]]: """Convert memory to messages for the model""" messages = [{"role": MessageRole.SYSTEM, "content": [{"type": "text", "text": self.system_prompt}]}] # Get the last memory step last_step = self.memory.steps[-1] if self.memory.steps else None for memory_step in self.memory.steps: if hasattr(memory_step, "task") and memory_step.task: # Add task message if it exists messages.append({ "role": MessageRole.USER, "content": [{"type": "text", "text": memory_step.task}] }) continue # Skip to next step after adding task if hasattr(memory_step, "model_output_message_plan") and memory_step.model_output_message_plan: messages.append({ "role": MessageRole.ASSISTANT, "content": [{"type": "text", "text": memory_step.model_output_message_plan.content, "agent_state": "plan"}] }) # Process model output message if it exists if hasattr(memory_step, "model_output") and memory_step.model_output: messages.append({ "role": MessageRole.ASSISTANT, "content": [{"type": "text", "text": memory_step.model_output}] }) # Process observations and images observation_content = [] # Add screenshot image paths if present if memory_step is last_step and hasattr(memory_step, "observations_images") and memory_step.observations_images: self.logger.log(f"Found {len(memory_step.observations_images)} image paths in step", level=LogLevel.DEBUG) for img_path in memory_step.observations_images: if isinstance(img_path, str) and os.path.exists(img_path): observation_content.append({"type": "image", "image": img_path}) elif isinstance(img_path, Image.Image): screenshot_path = f"screenshot_{int(time.time() * 1000)}.png" img_path.save(screenshot_path) observation_content.append({"type": "image", "image": screenshot_path}) else: self.logger.log(f" - Skipping invalid image: {type(img_path)}", level=LogLevel.ERROR) # Add text observations if any if hasattr(memory_step, "observations") and memory_step.observations: self.logger.log(f" - Adding text observation", level=LogLevel.DEBUG) observation_content.append({"type": "text", "text": f"Observation: {memory_step.observations}"}) # Add error if present and didn't already add observations if hasattr(memory_step, "error") and memory_step.error: self.logger.log(f" - Adding error message", level=LogLevel.DEBUG) observation_content.append({"type": "text", "text": f"Error: {memory_step.error}"}) # Add user message with content if we have any if observation_content: self.logger.log(f" - Adding user message with {len(observation_content)} content items", level=LogLevel.DEBUG) messages.append({ "role": MessageRole.USER, "content": observation_content }) # # Check for images in final message list # image_count = 0 # for msg in messages: # if isinstance(msg.get("content"), list): # for item in msg["content"]: # if isinstance(item, dict) and item.get("type") == "image": # image_count += 1 # print(f"Created {len(messages)} messages with {image_count} image paths") return messages def take_snapshot_callback(self, memory_step: ActionStep, agent=None) -> None: """Callback that takes a screenshot + memory snapshot after a step completes""" current_step = memory_step.step_number print(f"Taking screenshot for step {current_step}") # Check if desktop is still running if not self.desktop.is_running(): print("Desktop is no longer running. Terminating agent.") self.close() # Add a final observation indicating why the agent was terminated memory_step.observations = "Desktop session ended. Agent terminated." # Store final metadata before exiting self.store_metadata_to_file(agent) return # Exit the callback without attempting to take a screenshot try: time.sleep(2.0) # Let things happen on the desktop screenshot_bytes = self.desktop.screenshot() image = Image.open(BytesIO(screenshot_bytes)) # Create a filename with step number screenshot_path = os.path.join(self.data_dir, f"step_{current_step:03d}.png") image.save(screenshot_path) print(f"Saved screenshot to {screenshot_path}") for previous_memory_step in agent.memory.steps: # Remove previous screenshots from logs for lean processing if isinstance(previous_memory_step, ActionStep) and previous_memory_step.step_number <= current_step - 2: previous_memory_step.observations_images = None # Add to the current memory step # memory_step.observations_images = [image.copy()] # This takes the original image directly. memory_step.observations_images = [screenshot_path] #Storing memory and metadata to file: self.store_metadata_to_file(agent) except Exception as e: print(f"Error taking screenshot: {e}") def close(self): """Clean up resources""" if self.desktop: print("Stopping e2b stream...") self.desktop.stream.stop() print("Killing e2b sandbox...") self.desktop.kill() print("E2B sandbox terminated") # class QwenVLAPIModel(Model): # """Model wrapper for Qwen2.5VL API""" # def __init__( # self, # model_path: str = "Qwen/Qwen2.5-VL-72B-Instruct", # provider: str = "hyperbolic" # ): # super().__init__() # self.model_path = model_path # self.model_id = model_path # self.provider = provider # self.client = InferenceClient( # provider=self.provider, # ) # def __call__( # self, # messages: List[Dict[str, Any]], # stop_sequences: Optional[List[str]] = None, # **kwargs # ) -> ChatMessage: # """Convert a list of messages to an API request and return the response""" # # # Count images in messages - debug # # image_count = 0 # # for msg in messages: # # if isinstance(msg.get("content"), list): # # for item in msg["content"]: # # if isinstance(item, dict) and item.get("type") == "image": # # image_count += 1 # # print(f"QwenVLAPIModel received {len(messages)} messages with {image_count} images") # # Format the messages for the API # formatted_messages = [] # for msg in messages: # role = msg["role"] # if isinstance(msg["content"], list): # content = [] # for item in msg["content"]: # if item["type"] == "text": # content.append({"type": "text", "text": item["text"]}) # elif item["type"] == "image": # # Handle image path or direct image object # if isinstance(item["image"], str): # # Image is a path # with open(item["image"], "rb") as image_file: # base64_image = base64.b64encode(image_file.read()).decode("utf-8") # else: # # Image is a PIL image or similar object # img_byte_arr = io.BytesIO() # item["image"].save(img_byte_arr, format="PNG") # base64_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8") # content.append({ # "type": "image_url", # "image_url": { # "url": f"data:image/png;base64,{base64_image}" # } # }) # else: # content = [{"type": "text", "text": msg["content"]}] # formatted_messages.append({"role": role, "content": content}) # # Make the API request # completion = self.client.chat.completions.create( # model=self.model_path, # messages=formatted_messages, # max_tokens=kwargs.get("max_new_tokens", 512), # temperature=kwargs.get("temperature", 0.7), # top_p=kwargs.get("top_p", 0.9), # ) # # Extract the response text # output_text = completion.choices[0].message.content # return ChatMessage(role=MessageRole.ASSISTANT, content=output_text) # def to_dict(self) -> Dict[str, Any]: # """Convert the model to a dictionary""" # return { # "class": self.__class__.__name__, # "model_path": self.model_path, # "provider": self.provider, # # We don't save the API key for security reasons # } # @classmethod # def from_dict(cls, data: Dict[str, Any]) -> "QwenVLAPIModel": # """Create a model from a dictionary""" # return cls( # model_path=data.get("model_path", "Qwen/Qwen2.5-VL-72B-Instruct"), # provider=data.get("provider", "hyperbolic"), # ) class QwenVLAPIModel(Model): """Model wrapper for Qwen2.5VL API with fallback mechanism""" def __init__( self, model_path: str = "Qwen/Qwen2.5-VL-72B-Instruct", provider: str = "hyperbolic", hf_token: str = None, hf_base_url: str = "https://n5wr7lfx6wp94tvl.us-east-1.aws.endpoints.huggingface.cloud/v1/" ): super().__init__() self.model_path = model_path self.model_id = model_path self.provider = provider self.hf_token = hf_token self.hf_base_url = hf_base_url # Initialize hyperbolic client self.hyperbolic_client = InferenceClient( provider=self.provider, ) # Initialize HF OpenAI-compatible client if token is provided self.hf_client = None if hf_token: from openai import OpenAI self.hf_client = OpenAI( base_url=self.hf_base_url, api_key=self.hf_token ) def __call__( self, messages: List[Dict[str, Any]], stop_sequences: Optional[List[str]] = None, **kwargs ) -> ChatMessage: """Convert a list of messages to an API request with fallback mechanism""" # Format messages once for both APIs formatted_messages = self._format_messages(messages) # First try the HF endpoint if available if self.hf_client: try: completion = self._call_hf_endpoint( formatted_messages, stop_sequences, **kwargs ) return ChatMessage(role=MessageRole.ASSISTANT, content=completion) except Exception as e: print(f"HF endpoint failed with error: {e}. Falling back to hyperbolic.") # Continue to fallback # Fallback to hyperbolic try: return self._call_hyperbolic(formatted_messages, stop_sequences, **kwargs) except Exception as e: raise Exception(f"Both endpoints failed. Last error: {e}") def _format_messages(self, messages: List[Dict[str, Any]]): """Format messages for API requests - works for both endpoints""" formatted_messages = [] for msg in messages: role = msg["role"] content = [] if isinstance(msg["content"], list): for item in msg["content"]: if item["type"] == "text": content.append({"type": "text", "text": item["text"]}) elif item["type"] == "image": # Handle image path or direct image object if isinstance(item["image"], str): # Image is a path with open(item["image"], "rb") as image_file: base64_image = base64.b64encode(image_file.read()).decode("utf-8") else: # Image is a PIL image or similar object img_byte_arr = io.BytesIO() item["image"].save(img_byte_arr, format="PNG") base64_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8") content.append({ "type": "image_url", "image_url": { "url": f"data:image/png;base64,{base64_image}" } }) else: # Plain text message content = [{"type": "text", "text": msg["content"]}] formatted_messages.append({"role": role, "content": content}) return formatted_messages def _call_hf_endpoint(self, formatted_messages, stop_sequences=None, **kwargs): """Call the Hugging Face OpenAI-compatible endpoint""" # Extract parameters with defaults max_tokens = kwargs.get("max_new_tokens", 512) temperature = kwargs.get("temperature", 0.7) top_p = kwargs.get("top_p", 0.9) stream = kwargs.get("stream", False) completion = self.hf_client.chat.completions.create( model="tgi", # Model name for the endpoint messages=formatted_messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=stream, stop=stop_sequences ) if stream: # For streaming responses, return a generator def stream_generator(): for chunk in completion: yield chunk.choices[0].delta.content or "" return stream_generator() else: # For non-streaming, return the full text return completion.choices[0].message.content def _call_hyperbolic(self, formatted_messages, stop_sequences=None, **kwargs): """Call the hyperbolic API""" completion = self.hyperbolic_client.chat.completions.create( model=self.model_path, messages=formatted_messages, max_tokens=kwargs.get("max_new_tokens", 512), temperature=kwargs.get("temperature", 0.7), top_p=kwargs.get("top_p", 0.9), ) # Extract the response text output_text = completion.choices[0].message.content return ChatMessage(role=MessageRole.ASSISTANT, content=output_text) def to_dict(self) -> Dict[str, Any]: """Convert the model to a dictionary""" return { "class": self.__class__.__name__, "model_path": self.model_path, "provider": self.provider, "hf_base_url": self.hf_base_url, # We don't save the API keys for security reasons } @classmethod def from_dict(cls, data: Dict[str, Any]) -> "QwenVLAPIModel": """Create a model from a dictionary""" return cls( model_path=data.get("model_path", "Qwen/Qwen2.5-VL-72B-Instruct"), provider=data.get("provider", "hyperbolic"), hf_base_url=data.get("hf_base_url", "https://n5wr7lfx6wp94tvl.us-east-1.aws.endpoints.huggingface.cloud/v1/"), )