|
import os |
|
import logging |
|
import time |
|
import datetime |
|
import gradio as gr |
|
import datasets |
|
from huggingface_hub import snapshot_download, WebhooksServer, WebhookPayload, RepoCard |
|
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns |
|
|
|
from src.display.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
FAQ_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
TITLE, |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
Precision, |
|
WeightType, |
|
fields, |
|
) |
|
from src.envs import ( |
|
API, |
|
EVAL_REQUESTS_PATH, |
|
AGGREGATED_REPO, |
|
HF_TOKEN, |
|
QUEUE_REPO, |
|
REPO_ID, |
|
HF_HOME, |
|
) |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
|
|
|
|
|
|
|
|
DO_FULL_INIT = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True" |
|
LAST_UPDATE_LEADERBOARD = datetime.datetime.now() |
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN) |
|
|
|
|
|
def time_diff_wrapper(func): |
|
def wrapper(*args, **kwargs): |
|
start_time = time.time() |
|
result = func(*args, **kwargs) |
|
end_time = time.time() |
|
diff = end_time - start_time |
|
logging.info(f"Time taken for {func.__name__}: {diff} seconds") |
|
return result |
|
|
|
return wrapper |
|
|
|
|
|
@time_diff_wrapper |
|
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5): |
|
"""Download dataset with exponential backoff retries.""" |
|
attempt = 0 |
|
while attempt < max_attempts: |
|
try: |
|
logging.info(f"Downloading {repo_id} to {local_dir}") |
|
snapshot_download( |
|
repo_id=repo_id, |
|
local_dir=local_dir, |
|
repo_type=repo_type, |
|
tqdm_class=None, |
|
etag_timeout=30, |
|
max_workers=8, |
|
) |
|
logging.info("Download successful") |
|
return |
|
except Exception as e: |
|
wait_time = backoff_factor**attempt |
|
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s") |
|
time.sleep(wait_time) |
|
attempt += 1 |
|
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts") |
|
|
|
def get_latest_data_leaderboard(leaderboard_initial_df = None): |
|
current_time = datetime.datetime.now() |
|
global LAST_UPDATE_LEADERBOARD |
|
if current_time - LAST_UPDATE_LEADERBOARD < datetime.timedelta(minutes=10) and leaderboard_initial_df is not None: |
|
return leaderboard_initial_df |
|
LAST_UPDATE_LEADERBOARD = current_time |
|
leaderboard_dataset = datasets.load_dataset( |
|
AGGREGATED_REPO, |
|
"default", |
|
split="train", |
|
cache_dir=HF_HOME, |
|
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, |
|
verification_mode="no_checks" |
|
) |
|
|
|
leaderboard_df = get_leaderboard_df( |
|
leaderboard_dataset=leaderboard_dataset, |
|
cols=COLS, |
|
benchmark_cols=BENCHMARK_COLS, |
|
) |
|
|
|
return leaderboard_df |
|
|
|
def get_latest_data_queue(): |
|
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
return eval_queue_dfs |
|
|
|
def init_space(): |
|
"""Initializes the application space, loading only necessary data.""" |
|
if DO_FULL_INIT: |
|
|
|
try: |
|
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH) |
|
except Exception: |
|
restart_space() |
|
|
|
|
|
leaderboard_df = get_latest_data_leaderboard() |
|
|
|
|
|
eval_queue_dfs = get_latest_data_queue() |
|
|
|
return leaderboard_df, eval_queue_dfs |
|
|
|
|
|
|
|
|
|
leaderboard_df, eval_queue_dfs = init_space() |
|
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs |
|
|
|
|
|
|
|
def load_and_create_plots(): |
|
plot_df = create_plot_df(create_scores_df(leaderboard_df)) |
|
return plot_df |
|
|
|
def init_leaderboard(dataframe): |
|
return Leaderboard( |
|
value = dataframe, |
|
datatype=[c.type for c in fields(AutoEvalColumn)], |
|
select_columns=SelectColumns( |
|
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], |
|
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy], |
|
label="Select Columns to Display:", |
|
), |
|
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.fullname.name, AutoEvalColumn.license.name], |
|
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], |
|
filter_columns=[ |
|
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), |
|
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), |
|
ColumnFilter( |
|
AutoEvalColumn.params.name, |
|
type="slider", |
|
min=0.01, |
|
max=150, |
|
label="Select the number of parameters (B)", |
|
), |
|
ColumnFilter( |
|
AutoEvalColumn.still_on_hub.name, type="boolean", label="Private or deleted", default=True |
|
), |
|
ColumnFilter( |
|
AutoEvalColumn.merged.name, type="boolean", label="Contains a merge/moerge", default=True |
|
), |
|
ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False), |
|
ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True), |
|
], |
|
bool_checkboxgroup_label="Hide models", |
|
) |
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): |
|
leaderboard = init_leaderboard(leaderboard_df) |
|
|
|
with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=2): |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot_df = load_and_create_plots() |
|
chart = create_metric_plot_obj( |
|
plot_df, |
|
[AutoEvalColumn.average.name], |
|
title="Average of Top Scores and Human Baseline Over Time (from last update)", |
|
) |
|
gr.Plot(value=chart, min_width=500) |
|
with gr.Column(): |
|
plot_df = load_and_create_plots() |
|
chart = create_metric_plot_obj( |
|
plot_df, |
|
BENCHMARK_COLS, |
|
title="Top Scores and Human Baseline Over Time (from last update)", |
|
) |
|
gr.Plot(value=chart, min_width=500) |
|
|
|
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("❗FAQ", elem_id="llm-benchmark-tab-table", id=4): |
|
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("🚀 Submit ", elem_id="llm-benchmark-tab-table", id=5): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") |
|
model_type = gr.Dropdown( |
|
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], |
|
label="Model type", |
|
multiselect=False, |
|
value=ModelType.FT.to_str(" : "), |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
precision = gr.Dropdown( |
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
label="Precision", |
|
multiselect=False, |
|
value="float16", |
|
interactive=True, |
|
) |
|
weight_type = gr.Dropdown( |
|
choices=[i.value.name for i in WeightType], |
|
label="Weights type", |
|
multiselect=False, |
|
value="Original", |
|
interactive=True, |
|
) |
|
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Accordion( |
|
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
base_model_name_textbox, |
|
revision_name_textbox, |
|
precision, |
|
weight_type, |
|
model_type, |
|
], |
|
submission_result, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("📙 Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
demo.load(fn=get_latest_data_leaderboard, inputs=[leaderboard], outputs=[leaderboard]) |
|
leaderboard.change(fn=get_latest_data_queue, inputs=None, outputs=[finished_eval_table, running_eval_table, pending_eval_table]) |
|
|
|
|
|
demo.queue(default_concurrency_limit=40) |
|
|
|
|
|
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci |
|
|
|
def enable_space_ci_and_return_server(ui: gr.Blocks) -> WebhooksServer: |
|
|
|
|
|
|
|
if SPACE_ID is None: |
|
print("Not in a Space: Space CI disabled.") |
|
return WebhooksServer(ui=demo) |
|
|
|
if IS_EPHEMERAL_SPACE: |
|
print("In an ephemeral Space: Space CI disabled.") |
|
return WebhooksServer(ui=demo) |
|
|
|
card = RepoCard.load(repo_id_or_path=SPACE_ID, repo_type="space") |
|
config = card.data.get("space_ci", {}) |
|
print(f"Enabling Space CI with config from README: {config}") |
|
|
|
return configure_space_ci( |
|
blocks=ui, |
|
trusted_authors=config.get("trusted_authors"), |
|
private=config.get("private", "auto"), |
|
variables=config.get("variables", "auto"), |
|
secrets=config.get("secrets"), |
|
hardware=config.get("hardware"), |
|
storage=config.get("storage"), |
|
) |
|
|
|
|
|
webhooks_server = enable_space_ci_and_return_server(ui=demo) |
|
|
|
|
|
@webhooks_server.add_webhook |
|
def update_leaderboard(payload: WebhookPayload) -> None: |
|
"""Redownloads the leaderboard dataset each time it updates""" |
|
if payload.repo.type == "dataset" and payload.event.action == "update": |
|
datasets.load_dataset( |
|
AGGREGATED_REPO, |
|
"default", |
|
split="train", |
|
cache_dir=HF_HOME, |
|
download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD, |
|
verification_mode="no_checks" |
|
) |
|
|
|
|
|
LAST_UPDATE_QUEUE = datetime.datetime.now() |
|
@webhooks_server.add_webhook |
|
def update_queue(payload: WebhookPayload) -> None: |
|
"""Redownloads the queue dataset each time it updates""" |
|
if payload.repo.type == "dataset" and payload.event.action == "update": |
|
current_time = datetime.datetime.now() |
|
global LAST_UPDATE_QUEUE |
|
if current_time - LAST_UPDATE_QUEUE > datetime.timedelta(minutes=10): |
|
print("Would have updated the queue") |
|
|
|
|
|
|
|
LAST_UPDATE_QUEUE = datetime.datetime.now() |
|
|
|
webhooks_server.launch() |
|
|