Update app.py
Browse files
app.py
CHANGED
@@ -4,4 +4,131 @@ from transformers import (
|
|
4 |
pipeline,
|
5 |
BlenderbotTokenizer,
|
6 |
BlenderbotForConditionalGeneration,
|
7 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
pipeline,
|
5 |
BlenderbotTokenizer,
|
6 |
BlenderbotForConditionalGeneration,
|
7 |
+
)
|
8 |
+
|
9 |
+
image_path = ""
|
10 |
+
current_image_path = ""
|
11 |
+
question = ""
|
12 |
+
first_turn = True
|
13 |
+
|
14 |
+
try:
|
15 |
+
while image_path != str(1) and question != str(1):
|
16 |
+
###############################################################################
|
17 |
+
|
18 |
+
if first_turn:
|
19 |
+
image_path = input("Please enter the image path (type 1 to EXIT)\n")
|
20 |
+
else:
|
21 |
+
image_path = input(
|
22 |
+
"Please enter the image path (type 1 to EXIT) (type 2 to reuse image)\n"
|
23 |
+
)
|
24 |
+
|
25 |
+
###############################################################################
|
26 |
+
|
27 |
+
if image_path == str(1):
|
28 |
+
break
|
29 |
+
elif image_path == str(2) and first_turn == False:
|
30 |
+
pass
|
31 |
+
else:
|
32 |
+
image = Image.open(str(image_path))
|
33 |
+
|
34 |
+
question = input("Please enter your question (type 1 to EXIT)\n")
|
35 |
+
|
36 |
+
###############################################################################
|
37 |
+
|
38 |
+
# 5 MODEL INFERENCES.
|
39 |
+
# User Input = Image + Question About The Image.
|
40 |
+
# User -> Model 1 -> Model 2 -> Model 3 -> Model 4 -> Model 5
|
41 |
+
|
42 |
+
# Model 1.
|
43 |
+
|
44 |
+
vqa_pipeline_output = vqa_pipeline(image, question, top_k=5)[0]
|
45 |
+
|
46 |
+
# Model 2.
|
47 |
+
|
48 |
+
text = (
|
49 |
+
"I love "
|
50 |
+
+ str(vqa_pipeline_output["answer"])
|
51 |
+
+ " and I would like to know how to [MASK]."
|
52 |
+
)
|
53 |
+
bbu_pipeline_output = bbu_pipeline(text)
|
54 |
+
|
55 |
+
# Model 3.
|
56 |
+
|
57 |
+
utterance = bbu_pipeline_output[0]["sequence"]
|
58 |
+
inputs = tokenizer(utterance, return_tensors="pt")
|
59 |
+
result = facebook_model.generate(**inputs)
|
60 |
+
facebook_model_output = tokenizer.decode(result[0])
|
61 |
+
|
62 |
+
# Model 4.
|
63 |
+
|
64 |
+
facebook_model_output = facebook_model_output.replace("<s> ", "")
|
65 |
+
facebook_model_output = facebook_model_output.replace("<s>", "")
|
66 |
+
facebook_model_output = facebook_model_output.replace("</s>", "")
|
67 |
+
gpt2_pipeline_output = gpt2_pipeline(facebook_model_output)[0]["generated_text"]
|
68 |
+
|
69 |
+
# Model 5.
|
70 |
+
|
71 |
+
topic, prob = topic_model_1.transform(gpt2_pipeline_output)
|
72 |
+
topic_model_1_output = topic_model_1.get_topic_info(topic[0])["Representation"][
|
73 |
+
0
|
74 |
+
]
|
75 |
+
|
76 |
+
topic, prob = topic_model_2.transform(gpt2_pipeline_output)
|
77 |
+
topic_model_2_output = topic_model_2.get_topic_info(topic[0])["Representation"][
|
78 |
+
0
|
79 |
+
]
|
80 |
+
###############################################################################
|
81 |
+
|
82 |
+
print()
|
83 |
+
|
84 |
+
print("-" * 150)
|
85 |
+
print("vqa_pipeline_output = ", vqa_pipeline_output)
|
86 |
+
print("bbu_pipeline_output =", bbu_pipeline_output)
|
87 |
+
print("facebook_model_output =", facebook_model_output)
|
88 |
+
print("gpt2_pipeline_output =", gpt2_pipeline_output)
|
89 |
+
print("topic_model_1_output =", topic_model_1_output)
|
90 |
+
print("topic_model_2_output =", topic_model_2_output)
|
91 |
+
|
92 |
+
print()
|
93 |
+
|
94 |
+
print("-" * 150)
|
95 |
+
print("SUMMARY")
|
96 |
+
print("-" * 7)
|
97 |
+
print("Your Image:", image)
|
98 |
+
print("Your Question:", question)
|
99 |
+
print("-" * 100)
|
100 |
+
print(
|
101 |
+
"1. Highest Predicted Answer For Your Question:",
|
102 |
+
vqa_pipeline_output["answer"],
|
103 |
+
"\n",
|
104 |
+
)
|
105 |
+
print(text)
|
106 |
+
print(
|
107 |
+
"2. Highest Predicted Sequence On [MASK] Based on 1.:",
|
108 |
+
bbu_pipeline_output[0]["sequence"],
|
109 |
+
"\n",
|
110 |
+
)
|
111 |
+
print(
|
112 |
+
"3. Conversation Based On Previous Answer Based on 2.:",
|
113 |
+
facebook_model_output,
|
114 |
+
"\n",
|
115 |
+
)
|
116 |
+
print(
|
117 |
+
"4. Text Generated Based On Previous Answer Based on 3.:",
|
118 |
+
gpt2_pipeline_output,
|
119 |
+
"\n",
|
120 |
+
)
|
121 |
+
print(
|
122 |
+
"5. Highest Predicted Topic Model_1 For Previous The Answer Based on 4.:",
|
123 |
+
topic_model_1_output,
|
124 |
+
"\n",
|
125 |
+
)
|
126 |
+
print(
|
127 |
+
"6. Highest Predicted Topic Model_2 For Previous The Answer Based on 4.:",
|
128 |
+
topic_model_2_output,
|
129 |
+
)
|
130 |
+
print("-" * 150)
|
131 |
+
|
132 |
+
first_turn = False
|
133 |
+
except Exception as e:
|
134 |
+
print("Error:", e)
|