Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from bertopic import BERTopic
|
2 |
from PIL import Image
|
3 |
from transformers import (
|
@@ -6,129 +7,58 @@ from transformers import (
|
|
6 |
BlenderbotForConditionalGeneration,
|
7 |
)
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
first_turn = True
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
###############################################################################
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
"Please enter the image path (type 1 to EXIT) (type 2 to reuse image)\n"
|
23 |
-
)
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
else:
|
32 |
-
image = Image.open(str(image_path))
|
33 |
-
|
34 |
-
question = input("Please enter your question (type 1 to EXIT)\n")
|
35 |
-
|
36 |
-
###############################################################################
|
37 |
-
|
38 |
-
# 5 MODEL INFERENCES.
|
39 |
-
# User Input = Image + Question About The Image.
|
40 |
-
# User -> Model 1 -> Model 2 -> Model 3 -> Model 4 -> Model 5
|
41 |
-
|
42 |
-
# Model 1.
|
43 |
-
|
44 |
-
vqa_pipeline_output = vqa_pipeline(image, question, top_k=5)[0]
|
45 |
-
|
46 |
-
# Model 2.
|
47 |
-
|
48 |
-
text = (
|
49 |
-
"I love "
|
50 |
-
+ str(vqa_pipeline_output["answer"])
|
51 |
-
+ " and I would like to know how to [MASK]."
|
52 |
-
)
|
53 |
-
bbu_pipeline_output = bbu_pipeline(text)
|
54 |
-
|
55 |
-
# Model 3.
|
56 |
-
|
57 |
-
utterance = bbu_pipeline_output[0]["sequence"]
|
58 |
-
inputs = tokenizer(utterance, return_tensors="pt")
|
59 |
-
result = facebook_model.generate(**inputs)
|
60 |
-
facebook_model_output = tokenizer.decode(result[0])
|
61 |
-
|
62 |
-
# Model 4.
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
gpt2_pipeline_output = gpt2_pipeline(facebook_model_output)[0]["generated_text"]
|
68 |
|
69 |
-
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
]
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
print("bbu_pipeline_output =", bbu_pipeline_output)
|
87 |
-
print("facebook_model_output =", facebook_model_output)
|
88 |
-
print("gpt2_pipeline_output =", gpt2_pipeline_output)
|
89 |
-
print("topic_model_1_output =", topic_model_1_output)
|
90 |
-
print("topic_model_2_output =", topic_model_2_output)
|
91 |
|
92 |
-
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
print("-" * 7)
|
97 |
-
print("Your Image:", image)
|
98 |
-
print("Your Question:", question)
|
99 |
-
print("-" * 100)
|
100 |
-
print(
|
101 |
-
"1. Highest Predicted Answer For Your Question:",
|
102 |
-
vqa_pipeline_output["answer"],
|
103 |
-
"\n",
|
104 |
-
)
|
105 |
-
print(text)
|
106 |
-
print(
|
107 |
-
"2. Highest Predicted Sequence On [MASK] Based on 1.:",
|
108 |
-
bbu_pipeline_output[0]["sequence"],
|
109 |
-
"\n",
|
110 |
-
)
|
111 |
-
print(
|
112 |
-
"3. Conversation Based On Previous Answer Based on 2.:",
|
113 |
-
facebook_model_output,
|
114 |
-
"\n",
|
115 |
-
)
|
116 |
-
print(
|
117 |
-
"4. Text Generated Based On Previous Answer Based on 3.:",
|
118 |
-
gpt2_pipeline_output,
|
119 |
-
"\n",
|
120 |
-
)
|
121 |
-
print(
|
122 |
-
"5. Highest Predicted Topic Model_1 For Previous The Answer Based on 4.:",
|
123 |
-
topic_model_1_output,
|
124 |
-
"\n",
|
125 |
-
)
|
126 |
-
print(
|
127 |
-
"6. Highest Predicted Topic Model_2 For Previous The Answer Based on 4.:",
|
128 |
-
topic_model_2_output,
|
129 |
-
)
|
130 |
-
print("-" * 150)
|
131 |
|
132 |
-
first_turn = False
|
133 |
-
except Exception as e:
|
134 |
-
print("Error:", e)
|
|
|
1 |
+
import streamlit as st
|
2 |
from bertopic import BERTopic
|
3 |
from PIL import Image
|
4 |
from transformers import (
|
|
|
7 |
BlenderbotForConditionalGeneration,
|
8 |
)
|
9 |
|
10 |
+
def main():
|
11 |
+
st.title("Image Upload App")
|
12 |
+
st.write("Drag and drop an image file here.")
|
|
|
13 |
|
14 |
+
# Allow the user to upload an image file
|
15 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
16 |
|
17 |
+
if uploaded_file is not None:
|
18 |
+
# Display the uploaded image
|
19 |
+
image = Image.open(uploaded_file)
|
20 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
|
|
|
|
21 |
|
22 |
+
# Model 1.
|
23 |
+
# Model 1 gets input from the user.
|
24 |
+
# User -> Model 1
|
25 |
|
26 |
+
vqa_pipeline = pipeline(
|
27 |
+
task="visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa"
|
28 |
+
)
|
29 |
+
#########################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Model 2.
|
32 |
+
# Model 2 gets input from Model 1.
|
33 |
+
# User -> Model 1 -> Model 2
|
|
|
34 |
|
35 |
+
bbu_pipeline = pipeline(task="fill-mask", model="bert-base-uncased")
|
36 |
+
#########################################################################
|
37 |
|
38 |
+
# Model 3.
|
39 |
+
# Model 3 gets input from Model 2.
|
40 |
+
# User -> Model 1 -> Model 2 -> Model 3
|
|
|
41 |
|
42 |
+
model_name = "facebook/blenderbot-400M-distill"
|
43 |
+
tokenizer = BlenderbotTokenizer.from_pretrained(
|
44 |
+
pretrained_model_name_or_path=model_name
|
45 |
+
)
|
46 |
+
facebook_model = BlenderbotForConditionalGeneration.from_pretrained(
|
47 |
+
pretrained_model_name_or_path=model_name
|
48 |
+
)
|
49 |
+
#########################################################################
|
50 |
|
51 |
+
# Model 4.
|
52 |
+
# Model 4 gets input from Model 3.
|
53 |
+
# User -> Model 1 -> Model 2 -> Model 3 -> Model 4
|
54 |
|
55 |
+
gpt2_pipeline = pipeline(task="text-generation", model="gpt2")
|
56 |
+
#########################################################################
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Model 5.
|
59 |
+
# Model 5 gets input from Model 4.
|
60 |
+
# User -> Model 1 -> Model 2 -> Model 3 -> Model 4 -> Model 5
|
61 |
|
62 |
+
topic_model_1 = BERTopic.load(path="davanstrien/chat_topics")
|
63 |
+
topic_model_2 = BERTopic.load(path="MaartenGr/BERTopic_ArXiv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
|
|
|
|
|