snackshell's picture
Update app.py
9aeab3c verified
raw
history blame
5.44 kB
import os
import requests
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import io
import time
from concurrent.futures import ThreadPoolExecutor
# ===== CONFIGURATION =====
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
MODEL_NAME = "stabilityai/stable-diffusion-xl-base-1.0" # Using SDXL
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_NAME}"
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
WATERMARK_TEXT = "SelamGPT"
MAX_RETRIES = 3
TIMEOUT = 60 # Increased for SDXL's longer processing
EXECUTOR = ThreadPoolExecutor(max_workers=2)
# ===== WATERMARK FUNCTION =====
def add_watermark(image_bytes):
"""Add clean watermark with small text in bottom-right"""
try:
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
draw = ImageDraw.Draw(image)
# Font setup (smaller size)
font_size = 24
try:
font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
except:
font = ImageFont.load_default(font_size)
# Positioning (10px margin from edges)
text_width = draw.textlength(WATERMARK_TEXT, font=font)
x = image.width - text_width - 10
y = image.height - 34 # Slightly above bottom edge
# Draw white text with slight shadow for readability
draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128)) # Shadow
draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255)) # Main text
return image
except Exception as e:
print(f"Watermark error: {str(e)}")
return Image.open(io.BytesIO(image_bytes))
# ===== IMAGE GENERATION (SDXL-OPTIMIZED) =====
def generate_image(prompt):
"""Generate image with SDXL-specific parameters"""
if not prompt.strip():
return None, "⚠️ Please enter a prompt"
def api_call():
return requests.post(
API_URL,
headers=headers,
json={
"inputs": prompt,
"parameters": {
"height": 1024, # SDXL's native resolution
"width": 1024,
"num_inference_steps": 30, # Better quality than 25
"guidance_scale": 7.5 # SDXL's optimal value
},
"options": {"wait_for_model": True}
},
timeout=TIMEOUT
)
for attempt in range(MAX_RETRIES):
try:
future = EXECUTOR.submit(api_call)
response = future.result()
if response.status_code == 200:
return add_watermark(response.content), "✔️ Generation successful"
elif response.status_code == 503:
wait_time = (attempt + 1) * 15 # Longer wait for SDXL
print(f"Model loading, waiting {wait_time}s...")
time.sleep(wait_time)
continue
else:
return None, f"⚠️ API Error: {response.text[:200]}"
except requests.Timeout:
return None, f"⚠️ Timeout: Model took >{TIMEOUT}s to respond"
except Exception as e:
return None, f"⚠️ Unexpected error: {str(e)[:200]}"
return None, "⚠️ Failed after multiple attempts. Please try later."
# ===== GRADIO INTERFACE =====
theme = gr.themes.Default(
primary_hue="emerald",
secondary_hue="amber",
font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]
)
with gr.Blocks(theme=theme, title="SelamGPT Image Generator") as demo:
gr.Markdown("""
# 🎨 SelamGPT Image Generator
*Now powered by Stable Diffusion XL (1024x1024 resolution)*
""")
with gr.Row():
with gr.Column(scale=3):
prompt_input = gr.Textbox(
label="Describe your image",
placeholder="A futuristic Ethiopian city with flying cars...",
lines=3,
max_lines=5,
elem_id="prompt-box"
)
with gr.Row():
generate_btn = gr.Button("Generate Image", variant="primary")
clear_btn = gr.Button("Clear")
gr.Examples(
examples=[
["An ancient Aksumite warrior in cyberpunk armor, 4k detailed"],
["Traditional Ethiopian coffee ceremony in zero gravity, photorealistic"],
["Portrait of a Habesha queen with golden jewelry, studio lighting"]
],
inputs=prompt_input,
label="Try these SDXL-optimized prompts:"
)
with gr.Column(scale=2):
output_image = gr.Image(
label="Generated Image (1024x1024)",
height=512,
elem_id="output-image"
)
status_output = gr.Textbox(
label="Status",
interactive=False,
elem_id="status-box"
)
generate_btn.click(
fn=generate_image,
inputs=prompt_input,
outputs=[output_image, status_output],
queue=True,
show_progress="minimal"
)
clear_btn.click(
fn=lambda: [None, ""],
outputs=[output_image, status_output]
)
if __name__ == "__main__":
demo.queue(max_size=2)
demo.launch(server_name="0.0.0.0", server_port=7860)