Update app.py
Browse files
app.py
CHANGED
@@ -4,107 +4,175 @@ import gradio as gr
|
|
4 |
from PIL import Image, ImageDraw, ImageFont
|
5 |
import io
|
6 |
import time
|
|
|
7 |
|
8 |
-
#
|
9 |
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
|
10 |
-
MODEL_NAME = "stabilityai/stable-diffusion-xl-base-1.0"
|
11 |
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_NAME}"
|
12 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
13 |
WATERMARK_TEXT = "SelamGPT"
|
14 |
MAX_RETRIES = 3
|
|
|
|
|
15 |
|
|
|
16 |
def add_watermark(image_bytes):
|
17 |
-
"""Add watermark
|
18 |
try:
|
19 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
20 |
draw = ImageDraw.Draw(image)
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
# Calculate
|
29 |
bbox = draw.textbbox((0, 0), WATERMARK_TEXT, font=font)
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
# Draw watermark with semi-transparent white text and black outline
|
36 |
draw.text(
|
37 |
position,
|
38 |
WATERMARK_TEXT,
|
39 |
font=font,
|
40 |
-
fill=(255, 255, 255,
|
41 |
-
stroke_width=2,
|
42 |
-
stroke_fill=(0, 0, 0, 128)
|
43 |
-
)
|
44 |
|
45 |
return image
|
46 |
except Exception as e:
|
47 |
print(f"Watermark error: {str(e)}")
|
48 |
-
return Image.open(io.BytesIO(image_bytes)) #
|
49 |
|
|
|
50 |
def generate_image(prompt):
|
51 |
-
"""Generate image with
|
52 |
if not prompt.strip():
|
53 |
-
return "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
for attempt in range(MAX_RETRIES):
|
56 |
try:
|
57 |
-
|
58 |
-
|
59 |
-
headers=headers,
|
60 |
-
json={"inputs": prompt, "options": {"wait_for_model": True}},
|
61 |
-
timeout=30
|
62 |
-
)
|
63 |
|
64 |
if response.status_code == 200:
|
65 |
-
return add_watermark(response.content)
|
66 |
-
elif response.status_code == 503:
|
67 |
-
|
|
|
|
|
68 |
continue
|
69 |
else:
|
70 |
-
return f"API Error: {response.text}"
|
71 |
except requests.Timeout:
|
72 |
-
return "
|
73 |
except Exception as e:
|
74 |
-
return f"Unexpected error: {str(e)}"
|
75 |
|
76 |
-
return "Failed after multiple attempts.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
80 |
gr.Markdown("""
|
81 |
# 🎨 SelamGPT Image Generator
|
82 |
-
*
|
83 |
""")
|
84 |
|
85 |
with gr.Row():
|
86 |
-
with gr.Column():
|
87 |
prompt_input = gr.Textbox(
|
88 |
label="Describe your image",
|
89 |
-
placeholder="A futuristic city
|
90 |
-
lines=3
|
|
|
|
|
91 |
)
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
)
|
97 |
-
|
98 |
-
with gr.Column():
|
99 |
-
output_image = gr.Image(label="Generated Image", height=512)
|
100 |
-
error_output = gr.Textbox(label="Status", visible=False)
|
101 |
|
|
|
102 |
generate_btn.click(
|
103 |
fn=generate_image,
|
104 |
inputs=prompt_input,
|
105 |
-
outputs=[output_image,
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
)
|
108 |
|
|
|
109 |
if __name__ == "__main__":
|
110 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from PIL import Image, ImageDraw, ImageFont
|
5 |
import io
|
6 |
import time
|
7 |
+
from concurrent.futures import ThreadPoolExecutor
|
8 |
|
9 |
+
# ===== CONFIGURATION =====
|
10 |
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
|
11 |
+
MODEL_NAME = "stabilityai/stable-diffusion-xl-base-1.0"
|
12 |
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_NAME}"
|
13 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
14 |
WATERMARK_TEXT = "SelamGPT"
|
15 |
MAX_RETRIES = 3
|
16 |
+
TIMEOUT = 45 # Increased timeout for larger images
|
17 |
+
EXECUTOR = ThreadPoolExecutor(max_workers=2) # Handle concurrent requests
|
18 |
|
19 |
+
# ===== WATERMARK FUNCTION =====
|
20 |
def add_watermark(image_bytes):
|
21 |
+
"""Add professional watermark with fallback fonts"""
|
22 |
try:
|
23 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
24 |
draw = ImageDraw.Draw(image)
|
25 |
|
26 |
+
# Try multiple font options
|
27 |
+
font = None
|
28 |
+
for font_path in [
|
29 |
+
"Roboto-Bold.ttf", # Our Dockerfile installs this
|
30 |
+
"DejaVuSans-Bold.ttf",
|
31 |
+
"FreeSansBold.ttf",
|
32 |
+
None # Final fallback to default
|
33 |
+
]:
|
34 |
+
try:
|
35 |
+
size = min(image.width // 15, 40) # Responsive sizing
|
36 |
+
font = ImageFont.truetype(font_path, size) if font_path else ImageFont.load_default(size)
|
37 |
+
break
|
38 |
+
except:
|
39 |
+
continue
|
40 |
|
41 |
+
# Calculate dynamic position
|
42 |
bbox = draw.textbbox((0, 0), WATERMARK_TEXT, font=font)
|
43 |
+
text_w, text_h = bbox[2] - bbox[0], bbox[3] - bbox[1]
|
44 |
+
margin = image.width // 50
|
45 |
+
position = (image.width - text_w - margin, image.height - text_h - margin)
|
46 |
+
|
47 |
+
# Draw with outline effect
|
48 |
+
for offset in [(-1,-1), (1,1)]: # Shadow positions
|
49 |
+
draw.text(
|
50 |
+
(position[0]+offset[0], position[1]+offset[1]),
|
51 |
+
WATERMARK_TEXT,
|
52 |
+
font=font,
|
53 |
+
fill=(0, 0, 0, 180) # Semi-transparent black
|
54 |
|
|
|
55 |
draw.text(
|
56 |
position,
|
57 |
WATERMARK_TEXT,
|
58 |
font=font,
|
59 |
+
fill=(255, 255, 255, 200)) # Semi-transparent white
|
|
|
|
|
|
|
60 |
|
61 |
return image
|
62 |
except Exception as e:
|
63 |
print(f"Watermark error: {str(e)}")
|
64 |
+
return Image.open(io.BytesIO(image_bytes)) # Fallback to original
|
65 |
|
66 |
+
# ===== IMAGE GENERATION =====
|
67 |
def generate_image(prompt):
|
68 |
+
"""Generate image with robust error handling"""
|
69 |
if not prompt.strip():
|
70 |
+
return None, "⚠️ Please enter a prompt"
|
71 |
+
|
72 |
+
def api_call():
|
73 |
+
return requests.post(
|
74 |
+
API_URL,
|
75 |
+
headers=headers,
|
76 |
+
json={
|
77 |
+
"inputs": prompt,
|
78 |
+
"parameters": {
|
79 |
+
"height": 768,
|
80 |
+
"width": 768,
|
81 |
+
"num_inference_steps": 25
|
82 |
+
},
|
83 |
+
"options": {"wait_for_model": True}
|
84 |
+
},
|
85 |
+
timeout=TIMEOUT
|
86 |
+
)
|
87 |
|
88 |
for attempt in range(MAX_RETRIES):
|
89 |
try:
|
90 |
+
future = EXECUTOR.submit(api_call)
|
91 |
+
response = future.result()
|
|
|
|
|
|
|
|
|
92 |
|
93 |
if response.status_code == 200:
|
94 |
+
return add_watermark(response.content), "✔️ Generation successful"
|
95 |
+
elif response.status_code == 503:
|
96 |
+
wait_time = (attempt + 1) * 10
|
97 |
+
print(f"Model loading, waiting {wait_time}s...")
|
98 |
+
time.sleep(wait_time)
|
99 |
continue
|
100 |
else:
|
101 |
+
return None, f"⚠️ API Error: {response.text[:200]}"
|
102 |
except requests.Timeout:
|
103 |
+
return None, "⚠️ Timeout: Model took too long to respond"
|
104 |
except Exception as e:
|
105 |
+
return None, f"⚠️ Unexpected error: {str(e)[:200]}"
|
106 |
|
107 |
+
return None, "⚠️ Failed after multiple attempts. Please try again later."
|
108 |
+
|
109 |
+
# ===== GRADIO INTERFACE =====
|
110 |
+
theme = gr.themes.Default(
|
111 |
+
primary_hue="emerald",
|
112 |
+
secondary_hue="amber",
|
113 |
+
font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]
|
114 |
+
)
|
115 |
|
116 |
+
with gr.Blocks(theme=theme, title="SelamGPT Image Generator") as demo:
|
|
|
117 |
gr.Markdown("""
|
118 |
# 🎨 SelamGPT Image Generator
|
119 |
+
*Generate watermarked images with Stable Diffusion XL*
|
120 |
""")
|
121 |
|
122 |
with gr.Row():
|
123 |
+
with gr.Column(scale=3):
|
124 |
prompt_input = gr.Textbox(
|
125 |
label="Describe your image",
|
126 |
+
placeholder="A futuristic Ethiopian city with flying cars...",
|
127 |
+
lines=3,
|
128 |
+
max_lines=5,
|
129 |
+
elem_id="prompt-box"
|
130 |
)
|
131 |
+
with gr.Row():
|
132 |
+
generate_btn = gr.Button("Generate Image", variant="primary")
|
133 |
+
clear_btn = gr.Button("Clear")
|
134 |
+
|
135 |
+
gr.Examples(
|
136 |
+
examples=[
|
137 |
+
["An ancient Aksumite warrior in cyberpunk armor"],
|
138 |
+
["Traditional Ethiopian coffee ceremony in space"],
|
139 |
+
["Hyper-realistic portrait of a Habesha woman with neon tribal markings"]
|
140 |
+
],
|
141 |
+
inputs=prompt_input,
|
142 |
+
label="Example Prompts"
|
143 |
+
)
|
144 |
+
|
145 |
+
with gr.Column(scale=2):
|
146 |
+
output_image = gr.Image(
|
147 |
+
label="Generated Image",
|
148 |
+
height=512,
|
149 |
+
elem_id="output-image"
|
150 |
+
)
|
151 |
+
status_output = gr.Textbox(
|
152 |
+
label="Status",
|
153 |
+
interactive=False,
|
154 |
+
elem_id="status-box"
|
155 |
)
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
# Event handlers
|
158 |
generate_btn.click(
|
159 |
fn=generate_image,
|
160 |
inputs=prompt_input,
|
161 |
+
outputs=[output_image, status_output],
|
162 |
+
queue=True,
|
163 |
+
show_progress="minimal"
|
164 |
+
)
|
165 |
+
|
166 |
+
clear_btn.click(
|
167 |
+
fn=lambda: [None, ""],
|
168 |
+
outputs=[output_image, status_output]
|
169 |
)
|
170 |
|
171 |
+
# ===== DEPLOYMENT CONFIG =====
|
172 |
if __name__ == "__main__":
|
173 |
+
demo.queue(concurrency_count=2, api_open=False)
|
174 |
+
demo.launch(
|
175 |
+
server_name="0.0.0.0",
|
176 |
+
server_port=7860,
|
177 |
+
favicon_path="./favicon.ico" # Optional
|
178 |
+
)
|