Update app.py
Browse files
app.py
CHANGED
@@ -4,29 +4,35 @@ import random
|
|
4 |
from PIL import Image, ImageDraw, ImageFont
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline
|
|
|
7 |
|
8 |
# ===== CONFIG =====
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
11 |
model_repo_id = "stabilityai/sdxl-turbo"
|
12 |
-
pipe = DiffusionPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
13 |
pipe.to(device)
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
-
|
|
|
17 |
WATERMARK_TEXT = "SelamGPT"
|
18 |
|
19 |
# ===== WATERMARK FUNCTION =====
|
20 |
def add_watermark(image):
|
21 |
draw = ImageDraw.Draw(image)
|
22 |
-
font_size =
|
23 |
try:
|
24 |
font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
|
25 |
except:
|
26 |
font = ImageFont.load_default()
|
27 |
text_width = draw.textlength(WATERMARK_TEXT, font=font)
|
28 |
-
x = image.width - text_width -
|
29 |
-
y = image.height -
|
30 |
draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128))
|
31 |
draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255))
|
32 |
return image
|
@@ -51,15 +57,18 @@ def generate(
|
|
51 |
result = pipe(
|
52 |
prompt=prompt,
|
53 |
negative_prompt=negative_prompt,
|
54 |
-
width=
|
55 |
-
height=
|
56 |
guidance_scale=guidance_scale,
|
57 |
num_inference_steps=num_inference_steps,
|
58 |
generator=generator,
|
59 |
).images[0]
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
63 |
|
64 |
# ===== EXAMPLES =====
|
65 |
examples = [
|
@@ -85,7 +94,7 @@ with gr.Blocks(css=css, title="SelamGPT Turbo Generator") as demo:
|
|
85 |
)
|
86 |
generate_btn = gr.Button("Generate", variant="primary")
|
87 |
|
88 |
-
output_image = gr.Image(label="Generated Image", type="pil", format="
|
89 |
seed_display = gr.Textbox(label="Seed Used", interactive=False)
|
90 |
|
91 |
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
@@ -94,7 +103,7 @@ with gr.Blocks(css=css, title="SelamGPT Turbo Generator") as demo:
|
|
94 |
seed = gr.Slider(0, MAX_SEED, step=1, label="Seed", value=0)
|
95 |
|
96 |
guidance_scale = gr.Slider(0.0, 10.0, step=0.1, label="Guidance Scale", value=0.0)
|
97 |
-
num_inference_steps = gr.Slider(1,
|
98 |
|
99 |
gr.Examples(examples=examples, inputs=[prompt])
|
100 |
|
@@ -112,4 +121,4 @@ with gr.Blocks(css=css, title="SelamGPT Turbo Generator") as demo:
|
|
112 |
)
|
113 |
|
114 |
if __name__ == "__main__":
|
115 |
-
demo.launch()
|
|
|
4 |
from PIL import Image, ImageDraw, ImageFont
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline
|
7 |
+
import io
|
8 |
|
9 |
# ===== CONFIG =====
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
12 |
model_repo_id = "stabilityai/sdxl-turbo"
|
13 |
+
pipe = DiffusionPipeline.from_pretrained(
|
14 |
+
model_repo_id,
|
15 |
+
torch_dtype=torch_dtype,
|
16 |
+
variant="fp16" if device == "cuda" else None
|
17 |
+
)
|
18 |
pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
+
IMAGE_WIDTH = 768
|
22 |
+
IMAGE_HEIGHT = 768
|
23 |
WATERMARK_TEXT = "SelamGPT"
|
24 |
|
25 |
# ===== WATERMARK FUNCTION =====
|
26 |
def add_watermark(image):
|
27 |
draw = ImageDraw.Draw(image)
|
28 |
+
font_size = int(image.width * 0.03)
|
29 |
try:
|
30 |
font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
|
31 |
except:
|
32 |
font = ImageFont.load_default()
|
33 |
text_width = draw.textlength(WATERMARK_TEXT, font=font)
|
34 |
+
x = image.width - text_width - 12
|
35 |
+
y = image.height - font_size - 10
|
36 |
draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128))
|
37 |
draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255))
|
38 |
return image
|
|
|
57 |
result = pipe(
|
58 |
prompt=prompt,
|
59 |
negative_prompt=negative_prompt,
|
60 |
+
width=IMAGE_WIDTH,
|
61 |
+
height=IMAGE_HEIGHT,
|
62 |
guidance_scale=guidance_scale,
|
63 |
num_inference_steps=num_inference_steps,
|
64 |
generator=generator,
|
65 |
).images[0]
|
66 |
|
67 |
+
watermarked = add_watermark(result)
|
68 |
+
buffer = io.BytesIO()
|
69 |
+
watermarked.convert("RGB").save(buffer, format="JPEG", quality=70)
|
70 |
+
buffer.seek(0)
|
71 |
+
return Image.open(buffer), seed
|
72 |
|
73 |
# ===== EXAMPLES =====
|
74 |
examples = [
|
|
|
94 |
)
|
95 |
generate_btn = gr.Button("Generate", variant="primary")
|
96 |
|
97 |
+
output_image = gr.Image(label="Generated Image", type="pil", format="jpeg")
|
98 |
seed_display = gr.Textbox(label="Seed Used", interactive=False)
|
99 |
|
100 |
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
|
|
103 |
seed = gr.Slider(0, MAX_SEED, step=1, label="Seed", value=0)
|
104 |
|
105 |
guidance_scale = gr.Slider(0.0, 10.0, step=0.1, label="Guidance Scale", value=0.0)
|
106 |
+
num_inference_steps = gr.Slider(1, 10, step=1, label="Inference Steps", value=2)
|
107 |
|
108 |
gr.Examples(examples=examples, inputs=[prompt])
|
109 |
|
|
|
121 |
)
|
122 |
|
123 |
if __name__ == "__main__":
|
124 |
+
demo.launch()
|