Update app.py
Browse files
app.py
CHANGED
@@ -8,28 +8,21 @@ from concurrent.futures import ThreadPoolExecutor
|
|
8 |
|
9 |
# ===== CONFIGURATION =====
|
10 |
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
|
11 |
-
MODEL_NAME = "stabilityai/stable-diffusion-xl-base-1.0"
|
12 |
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_NAME}"
|
13 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
14 |
WATERMARK_TEXT = "SelamGPT"
|
15 |
MAX_RETRIES = 3
|
16 |
-
TIMEOUT = 60
|
17 |
EXECUTOR = ThreadPoolExecutor(max_workers=2)
|
18 |
|
19 |
# ===== WATERMARK FUNCTION =====
|
20 |
def add_watermark(image_bytes):
|
21 |
-
"""
|
22 |
try:
|
23 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
|
|
24 |
|
25 |
-
# Save as medium-quality PNG to buffer
|
26 |
-
png_buffer = io.BytesIO()
|
27 |
-
image.save(png_buffer, format="PNG", optimize=True, quality=85) # Medium quality
|
28 |
-
png_buffer.seek(0)
|
29 |
-
|
30 |
-
# Add watermark to the PNG
|
31 |
-
watermarked_image = Image.open(png_buffer)
|
32 |
-
draw = ImageDraw.Draw(watermarked_image)
|
33 |
font_size = 24
|
34 |
try:
|
35 |
font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
|
@@ -37,25 +30,23 @@ def add_watermark(image_bytes):
|
|
37 |
font = ImageFont.load_default(font_size)
|
38 |
|
39 |
text_width = draw.textlength(WATERMARK_TEXT, font=font)
|
40 |
-
x =
|
41 |
-
y =
|
42 |
|
43 |
draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128))
|
44 |
draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255))
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
return Image.open(
|
51 |
-
|
52 |
except Exception as e:
|
53 |
print(f"Watermark error: {str(e)}")
|
54 |
return Image.open(io.BytesIO(image_bytes))
|
55 |
|
56 |
-
# ===== IMAGE GENERATION
|
57 |
def generate_image(prompt):
|
58 |
-
"""Generate image with SDXL-specific parameters"""
|
59 |
if not prompt.strip():
|
60 |
return None, "⚠️ Please enter a prompt"
|
61 |
|
@@ -66,10 +57,9 @@ def generate_image(prompt):
|
|
66 |
json={
|
67 |
"inputs": prompt,
|
68 |
"parameters": {
|
69 |
-
"height": 1024,
|
70 |
"width": 1024,
|
71 |
-
"num_inference_steps": 30
|
72 |
-
"guidance_scale": 7.5 # SDXL's optimal value
|
73 |
},
|
74 |
"options": {"wait_for_model": True}
|
75 |
},
|
@@ -84,7 +74,7 @@ def generate_image(prompt):
|
|
84 |
if response.status_code == 200:
|
85 |
return add_watermark(response.content), "✔️ Generation successful"
|
86 |
elif response.status_code == 503:
|
87 |
-
wait_time = (attempt + 1) * 15
|
88 |
print(f"Model loading, waiting {wait_time}s...")
|
89 |
time.sleep(wait_time)
|
90 |
continue
|
@@ -97,20 +87,18 @@ def generate_image(prompt):
|
|
97 |
|
98 |
return None, "⚠️ Failed after multiple attempts. Please try later."
|
99 |
|
100 |
-
# ===== GRADIO
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
format="png", # Explicit PNG format
|
107 |
-
height=512
|
108 |
-
)
|
109 |
|
|
|
110 |
with gr.Blocks(theme=theme, title="SelamGPT Image Generator") as demo:
|
111 |
gr.Markdown("""
|
112 |
# 🎨 SelamGPT Image Generator
|
113 |
-
*
|
114 |
""")
|
115 |
|
116 |
with gr.Row():
|
@@ -119,8 +107,7 @@ with gr.Blocks(theme=theme, title="SelamGPT Image Generator") as demo:
|
|
119 |
label="Describe your image",
|
120 |
placeholder="A futuristic Ethiopian city with flying cars...",
|
121 |
lines=3,
|
122 |
-
max_lines=5
|
123 |
-
elem_id="prompt-box"
|
124 |
)
|
125 |
with gr.Row():
|
126 |
generate_btn = gr.Button("Generate Image", variant="primary")
|
@@ -129,31 +116,29 @@ with gr.Blocks(theme=theme, title="SelamGPT Image Generator") as demo:
|
|
129 |
gr.Examples(
|
130 |
examples=[
|
131 |
["An ancient Aksumite warrior in cyberpunk armor, 4k detailed"],
|
132 |
-
["Traditional Ethiopian coffee ceremony in zero gravity
|
133 |
-
["Portrait of a Habesha queen with golden jewelry
|
134 |
],
|
135 |
-
inputs=prompt_input
|
136 |
-
label="Try these SDXL-optimized prompts:"
|
137 |
)
|
138 |
|
139 |
with gr.Column(scale=2):
|
140 |
output_image = gr.Image(
|
141 |
-
label="Generated Image
|
142 |
-
|
143 |
-
|
|
|
144 |
)
|
145 |
status_output = gr.Textbox(
|
146 |
label="Status",
|
147 |
-
interactive=False
|
148 |
-
elem_id="status-box"
|
149 |
)
|
150 |
|
151 |
generate_btn.click(
|
152 |
fn=generate_image,
|
153 |
inputs=prompt_input,
|
154 |
outputs=[output_image, status_output],
|
155 |
-
queue=True
|
156 |
-
show_progress="minimal"
|
157 |
)
|
158 |
|
159 |
clear_btn.click(
|
|
|
8 |
|
9 |
# ===== CONFIGURATION =====
|
10 |
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
|
11 |
+
MODEL_NAME = "stabilityai/stable-diffusion-xl-base-1.0"
|
12 |
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_NAME}"
|
13 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
14 |
WATERMARK_TEXT = "SelamGPT"
|
15 |
MAX_RETRIES = 3
|
16 |
+
TIMEOUT = 60
|
17 |
EXECUTOR = ThreadPoolExecutor(max_workers=2)
|
18 |
|
19 |
# ===== WATERMARK FUNCTION =====
|
20 |
def add_watermark(image_bytes):
|
21 |
+
"""Add watermark with optimized PNG output"""
|
22 |
try:
|
23 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
24 |
+
draw = ImageDraw.Draw(image)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
font_size = 24
|
27 |
try:
|
28 |
font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
|
|
|
30 |
font = ImageFont.load_default(font_size)
|
31 |
|
32 |
text_width = draw.textlength(WATERMARK_TEXT, font=font)
|
33 |
+
x = image.width - text_width - 10
|
34 |
+
y = image.height - 34
|
35 |
|
36 |
draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128))
|
37 |
draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255))
|
38 |
|
39 |
+
# Convert to optimized PNG
|
40 |
+
img_byte_arr = io.BytesIO()
|
41 |
+
image.save(img_byte_arr, format='PNG', optimize=True, quality=85)
|
42 |
+
img_byte_arr.seek(0)
|
43 |
+
return Image.open(img_byte_arr)
|
|
|
44 |
except Exception as e:
|
45 |
print(f"Watermark error: {str(e)}")
|
46 |
return Image.open(io.BytesIO(image_bytes))
|
47 |
|
48 |
+
# ===== IMAGE GENERATION =====
|
49 |
def generate_image(prompt):
|
|
|
50 |
if not prompt.strip():
|
51 |
return None, "⚠️ Please enter a prompt"
|
52 |
|
|
|
57 |
json={
|
58 |
"inputs": prompt,
|
59 |
"parameters": {
|
60 |
+
"height": 1024,
|
61 |
"width": 1024,
|
62 |
+
"num_inference_steps": 30
|
|
|
63 |
},
|
64 |
"options": {"wait_for_model": True}
|
65 |
},
|
|
|
74 |
if response.status_code == 200:
|
75 |
return add_watermark(response.content), "✔️ Generation successful"
|
76 |
elif response.status_code == 503:
|
77 |
+
wait_time = (attempt + 1) * 15
|
78 |
print(f"Model loading, waiting {wait_time}s...")
|
79 |
time.sleep(wait_time)
|
80 |
continue
|
|
|
87 |
|
88 |
return None, "⚠️ Failed after multiple attempts. Please try later."
|
89 |
|
90 |
+
# ===== GRADIO THEME =====
|
91 |
+
theme = gr.themes.Default(
|
92 |
+
primary_hue="emerald",
|
93 |
+
secondary_hue="amber",
|
94 |
+
font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]
|
95 |
+
)
|
|
|
|
|
|
|
96 |
|
97 |
+
# ===== GRADIO INTERFACE =====
|
98 |
with gr.Blocks(theme=theme, title="SelamGPT Image Generator") as demo:
|
99 |
gr.Markdown("""
|
100 |
# 🎨 SelamGPT Image Generator
|
101 |
+
*Powered by Stable Diffusion XL (1024x1024 PNG output)*
|
102 |
""")
|
103 |
|
104 |
with gr.Row():
|
|
|
107 |
label="Describe your image",
|
108 |
placeholder="A futuristic Ethiopian city with flying cars...",
|
109 |
lines=3,
|
110 |
+
max_lines=5
|
|
|
111 |
)
|
112 |
with gr.Row():
|
113 |
generate_btn = gr.Button("Generate Image", variant="primary")
|
|
|
116 |
gr.Examples(
|
117 |
examples=[
|
118 |
["An ancient Aksumite warrior in cyberpunk armor, 4k detailed"],
|
119 |
+
["Traditional Ethiopian coffee ceremony in zero gravity"],
|
120 |
+
["Portrait of a Habesha queen with golden jewelry"]
|
121 |
],
|
122 |
+
inputs=prompt_input
|
|
|
123 |
)
|
124 |
|
125 |
with gr.Column(scale=2):
|
126 |
output_image = gr.Image(
|
127 |
+
label="Generated Image",
|
128 |
+
type="pil",
|
129 |
+
format="png",
|
130 |
+
height=512
|
131 |
)
|
132 |
status_output = gr.Textbox(
|
133 |
label="Status",
|
134 |
+
interactive=False
|
|
|
135 |
)
|
136 |
|
137 |
generate_btn.click(
|
138 |
fn=generate_image,
|
139 |
inputs=prompt_input,
|
140 |
outputs=[output_image, status_output],
|
141 |
+
queue=True
|
|
|
142 |
)
|
143 |
|
144 |
clear_btn.click(
|