Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,11 @@ import io
|
|
8 |
import time
|
9 |
|
10 |
# ===== CONFIG =====
|
|
|
|
|
|
|
|
|
|
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
13 |
|
@@ -20,9 +25,21 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
20 |
)
|
21 |
pipe.to(device)
|
22 |
|
23 |
-
# Enable
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
MAX_SEED = np.iinfo(np.int32).max
|
28 |
IMAGE_SIZE = 1024 # Same as original code
|
@@ -74,27 +91,34 @@ def generate(
|
|
74 |
|
75 |
generator = torch.manual_seed(seed)
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
96 |
|
97 |
-
|
|
|
|
|
|
|
|
|
98 |
|
99 |
# ===== EXAMPLES =====
|
100 |
examples = [
|
|
|
8 |
import time
|
9 |
|
10 |
# ===== CONFIG =====
|
11 |
+
# Print debug info
|
12 |
+
print(f"PyTorch version: {torch.__version__}")
|
13 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
14 |
+
print(f"CUDA device count: {torch.cuda.device_count()}")
|
15 |
+
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
18 |
|
|
|
25 |
)
|
26 |
pipe.to(device)
|
27 |
|
28 |
+
# Enable optimizations only if GPU is available
|
29 |
+
if device == "cuda":
|
30 |
+
try:
|
31 |
+
pipe.enable_xformers_memory_efficient_attention()
|
32 |
+
print("Enabled xformers memory efficient attention")
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Could not enable xformers: {str(e)}")
|
35 |
+
|
36 |
+
try:
|
37 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
38 |
+
print("Enabled channels last memory format")
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Could not enable channels last: {str(e)}")
|
41 |
+
else:
|
42 |
+
print("Running on CPU - skipping GPU optimizations")
|
43 |
|
44 |
MAX_SEED = np.iinfo(np.int32).max
|
45 |
IMAGE_SIZE = 1024 # Same as original code
|
|
|
91 |
|
92 |
generator = torch.manual_seed(seed)
|
93 |
|
94 |
+
try:
|
95 |
+
# Ultra-fast generation with minimal steps
|
96 |
+
result = pipe(
|
97 |
+
prompt=prompt,
|
98 |
+
negative_prompt=negative_prompt,
|
99 |
+
width=IMAGE_SIZE,
|
100 |
+
height=IMAGE_SIZE,
|
101 |
+
guidance_scale=guidance_scale,
|
102 |
+
num_inference_steps=max(1, num_inference_steps), # Minimum 1 step
|
103 |
+
generator=generator,
|
104 |
+
).images[0]
|
105 |
+
|
106 |
+
# Optimized watermark and JPG conversion
|
107 |
+
watermarked = add_watermark(result)
|
108 |
+
buffer = io.BytesIO()
|
109 |
+
watermarked.save(buffer, format="JPEG", quality=85, optimize=True)
|
110 |
+
buffer.seek(0)
|
111 |
+
|
112 |
+
gen_time = time.time() - start_time
|
113 |
+
status = f"✔️ Generated in {gen_time:.2f}s | Seed: {seed}"
|
114 |
+
|
115 |
+
return Image.open(buffer), status
|
116 |
|
117 |
+
except torch.cuda.OutOfMemoryError:
|
118 |
+
return None, "⚠️ GPU out of memory - try a simpler prompt"
|
119 |
+
except Exception as e:
|
120 |
+
print(f"Generation error: {str(e)}")
|
121 |
+
return None, f"⚠️ Error: {str(e)[:200]}"
|
122 |
|
123 |
# ===== EXAMPLES =====
|
124 |
examples = [
|