Update app.py
Browse files
app.py
CHANGED
@@ -1,101 +1,117 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image, ImageDraw, ImageFont
|
3 |
import io
|
4 |
-
import
|
5 |
-
from
|
6 |
|
7 |
# ===== CONFIGURATION =====
|
8 |
-
|
|
|
|
|
|
|
9 |
WATERMARK_TEXT = "SelamGPT"
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
def load_model():
|
14 |
-
pipe = DiffusionPipeline.from_pretrained(
|
15 |
-
MODEL_NAME,
|
16 |
-
torch_dtype=TORCH_DTYPE
|
17 |
-
).to(DEVICE)
|
18 |
-
|
19 |
-
# Optimizations
|
20 |
-
if DEVICE == "cuda":
|
21 |
-
try:
|
22 |
-
pipe.enable_xformers_memory_efficient_attention()
|
23 |
-
except:
|
24 |
-
print("Xformers not available, using default attention")
|
25 |
-
pipe.enable_attention_slicing()
|
26 |
-
|
27 |
-
return pipe
|
28 |
|
29 |
# ===== WATERMARK FUNCTION =====
|
30 |
-
def add_watermark(
|
31 |
"""Add watermark with optimized PNG output"""
|
32 |
try:
|
|
|
33 |
draw = ImageDraw.Draw(image)
|
34 |
|
35 |
-
font_size =
|
36 |
try:
|
37 |
font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
|
38 |
except:
|
39 |
font = ImageFont.load_default(font_size)
|
40 |
|
41 |
text_width = draw.textlength(WATERMARK_TEXT, font=font)
|
42 |
-
|
43 |
-
|
44 |
-
y = image.height - (font_size * 1.5)
|
45 |
|
46 |
-
|
47 |
-
draw.text((x
|
48 |
-
# Main text
|
49 |
-
draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 215, 0)) # Gold color
|
50 |
|
51 |
-
#
|
52 |
img_byte_arr = io.BytesIO()
|
53 |
-
image.save(img_byte_arr, format='PNG', optimize=True)
|
|
|
54 |
return Image.open(img_byte_arr)
|
55 |
except Exception as e:
|
56 |
print(f"Watermark error: {str(e)}")
|
57 |
-
return
|
58 |
|
59 |
# ===== IMAGE GENERATION =====
|
60 |
def generate_image(prompt):
|
61 |
if not prompt.strip():
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
)
|
73 |
-
return add_watermark(result.images[0]), "🎨 Generation complete!"
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
# ===== GRADIO
|
81 |
-
|
82 |
primary_hue="emerald",
|
83 |
-
secondary_hue="
|
84 |
font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]
|
85 |
-
)
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
with gr.Row(
|
90 |
with gr.Column(scale=3):
|
91 |
prompt_input = gr.Textbox(
|
92 |
label="Describe your image",
|
93 |
placeholder="A futuristic Ethiopian city with flying cars...",
|
94 |
lines=3,
|
95 |
-
max_lines=5
|
96 |
-
autofocus=True
|
97 |
)
|
98 |
-
|
|
|
|
|
99 |
|
100 |
gr.Examples(
|
101 |
examples=[
|
@@ -103,41 +119,33 @@ with gr.Blocks(theme=gr.themes.Default(
|
|
103 |
["Traditional Ethiopian coffee ceremony in zero gravity"],
|
104 |
["Portrait of a Habesha queen with golden jewelry"]
|
105 |
],
|
106 |
-
inputs=prompt_input
|
107 |
-
label="Try these prompts:"
|
108 |
)
|
109 |
-
|
110 |
with gr.Column(scale=2):
|
111 |
output_image = gr.Image(
|
112 |
label="Generated Image",
|
113 |
type="pil",
|
114 |
-
|
115 |
-
|
116 |
)
|
117 |
-
|
118 |
label="Status",
|
119 |
-
interactive=False
|
120 |
-
show_label=False
|
121 |
)
|
122 |
|
123 |
-
# Event handlers
|
124 |
generate_btn.click(
|
125 |
fn=generate_image,
|
126 |
inputs=prompt_input,
|
127 |
-
outputs=[output_image,
|
128 |
-
|
129 |
)
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
inputs=prompt_input,
|
135 |
-
outputs=[output_image, status]
|
136 |
)
|
137 |
|
138 |
if __name__ == "__main__":
|
139 |
-
demo.
|
140 |
-
|
141 |
-
server_port=7860,
|
142 |
-
share=False
|
143 |
-
)
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
import gradio as gr
|
4 |
from PIL import Image, ImageDraw, ImageFont
|
5 |
import io
|
6 |
+
import time
|
7 |
+
from concurrent.futures import ThreadPoolExecutor
|
8 |
|
9 |
# ===== CONFIGURATION =====
|
10 |
+
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
|
11 |
+
MODEL_NAME = "stabilityai/stable-diffusion-xl-base-1.0"
|
12 |
+
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_NAME}"
|
13 |
+
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
14 |
WATERMARK_TEXT = "SelamGPT"
|
15 |
+
MAX_RETRIES = 3
|
16 |
+
TIMEOUT = 60
|
17 |
+
EXECUTOR = ThreadPoolExecutor(max_workers=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# ===== WATERMARK FUNCTION =====
|
20 |
+
def add_watermark(image_bytes):
|
21 |
"""Add watermark with optimized PNG output"""
|
22 |
try:
|
23 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
24 |
draw = ImageDraw.Draw(image)
|
25 |
|
26 |
+
font_size = 24
|
27 |
try:
|
28 |
font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
|
29 |
except:
|
30 |
font = ImageFont.load_default(font_size)
|
31 |
|
32 |
text_width = draw.textlength(WATERMARK_TEXT, font=font)
|
33 |
+
x = image.width - text_width - 10
|
34 |
+
y = image.height - 34
|
|
|
35 |
|
36 |
+
draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128))
|
37 |
+
draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255))
|
|
|
|
|
38 |
|
39 |
+
# Convert to optimized PNG
|
40 |
img_byte_arr = io.BytesIO()
|
41 |
+
image.save(img_byte_arr, format='PNG', optimize=True, quality=85)
|
42 |
+
img_byte_arr.seek(0)
|
43 |
return Image.open(img_byte_arr)
|
44 |
except Exception as e:
|
45 |
print(f"Watermark error: {str(e)}")
|
46 |
+
return Image.open(io.BytesIO(image_bytes))
|
47 |
|
48 |
# ===== IMAGE GENERATION =====
|
49 |
def generate_image(prompt):
|
50 |
if not prompt.strip():
|
51 |
+
return None, "⚠️ Please enter a prompt"
|
52 |
|
53 |
+
def api_call():
|
54 |
+
return requests.post(
|
55 |
+
API_URL,
|
56 |
+
headers=headers,
|
57 |
+
json={
|
58 |
+
"inputs": prompt,
|
59 |
+
"parameters": {
|
60 |
+
"height": 1024,
|
61 |
+
"width": 1024,
|
62 |
+
"num_inference_steps": 30
|
63 |
+
},
|
64 |
+
"options": {"wait_for_model": True}
|
65 |
+
},
|
66 |
+
timeout=TIMEOUT
|
67 |
)
|
|
|
68 |
|
69 |
+
for attempt in range(MAX_RETRIES):
|
70 |
+
try:
|
71 |
+
future = EXECUTOR.submit(api_call)
|
72 |
+
response = future.result()
|
73 |
+
|
74 |
+
if response.status_code == 200:
|
75 |
+
return add_watermark(response.content), "✔️ Generation successful"
|
76 |
+
elif response.status_code == 503:
|
77 |
+
wait_time = (attempt + 1) * 15
|
78 |
+
print(f"Model loading, waiting {wait_time}s...")
|
79 |
+
time.sleep(wait_time)
|
80 |
+
continue
|
81 |
+
else:
|
82 |
+
return None, f"⚠️ API Error: {response.text[:200]}"
|
83 |
+
except requests.Timeout:
|
84 |
+
return None, f"⚠️ Timeout: Model took >{TIMEOUT}s to respond"
|
85 |
+
except Exception as e:
|
86 |
+
return None, f"⚠️ Unexpected error: {str(e)[:200]}"
|
87 |
+
|
88 |
+
return None, "⚠️ Failed after multiple attempts. Please try later."
|
89 |
|
90 |
+
# ===== GRADIO THEME =====
|
91 |
+
theme = gr.themes.Default(
|
92 |
primary_hue="emerald",
|
93 |
+
secondary_hue="amber",
|
94 |
font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]
|
95 |
+
)
|
96 |
+
|
97 |
+
# ===== GRADIO INTERFACE =====
|
98 |
+
with gr.Blocks(theme=theme, title="SelamGPT Image Generator") as demo:
|
99 |
+
gr.Markdown("""
|
100 |
+
# 🎨 SelamGPT Image Generator
|
101 |
+
*Powered by Stable Diffusion XL (1024x1024 PNG output)*
|
102 |
+
""")
|
103 |
|
104 |
+
with gr.Row():
|
105 |
with gr.Column(scale=3):
|
106 |
prompt_input = gr.Textbox(
|
107 |
label="Describe your image",
|
108 |
placeholder="A futuristic Ethiopian city with flying cars...",
|
109 |
lines=3,
|
110 |
+
max_lines=5
|
|
|
111 |
)
|
112 |
+
with gr.Row():
|
113 |
+
generate_btn = gr.Button("Generate Image", variant="primary")
|
114 |
+
clear_btn = gr.Button("Clear")
|
115 |
|
116 |
gr.Examples(
|
117 |
examples=[
|
|
|
119 |
["Traditional Ethiopian coffee ceremony in zero gravity"],
|
120 |
["Portrait of a Habesha queen with golden jewelry"]
|
121 |
],
|
122 |
+
inputs=prompt_input
|
|
|
123 |
)
|
124 |
+
|
125 |
with gr.Column(scale=2):
|
126 |
output_image = gr.Image(
|
127 |
label="Generated Image",
|
128 |
type="pil",
|
129 |
+
format="png",
|
130 |
+
height=512
|
131 |
)
|
132 |
+
status_output = gr.Textbox(
|
133 |
label="Status",
|
134 |
+
interactive=False
|
|
|
135 |
)
|
136 |
|
|
|
137 |
generate_btn.click(
|
138 |
fn=generate_image,
|
139 |
inputs=prompt_input,
|
140 |
+
outputs=[output_image, status_output],
|
141 |
+
queue=True
|
142 |
)
|
143 |
|
144 |
+
clear_btn.click(
|
145 |
+
fn=lambda: [None, ""],
|
146 |
+
outputs=[output_image, status_output]
|
|
|
|
|
147 |
)
|
148 |
|
149 |
if __name__ == "__main__":
|
150 |
+
demo.queue(max_size=2)
|
151 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|