Update app.py
Browse files
app.py
CHANGED
@@ -1,125 +1,98 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
import gradio as gr
|
|
|
4 |
from PIL import Image, ImageDraw, ImageFont
|
5 |
-
import io
|
6 |
-
import time
|
7 |
-
from concurrent.futures import ThreadPoolExecutor
|
8 |
|
9 |
-
# =====
|
10 |
-
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
|
11 |
-
MODEL_NAME = "stabilityai/stable-diffusion-xl-base-1.0"
|
12 |
-
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_NAME}"
|
13 |
-
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
14 |
WATERMARK_TEXT = "SelamGPT"
|
15 |
-
|
16 |
-
|
17 |
-
EXECUTOR = ThreadPoolExecutor(max_workers=3)
|
18 |
|
19 |
-
# =====
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
-
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
23 |
draw = ImageDraw.Draw(image)
|
24 |
-
|
25 |
-
font_size = 24
|
26 |
-
try:
|
27 |
-
font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
|
28 |
-
except:
|
29 |
-
font = ImageFont.load_default(font_size)
|
30 |
-
|
31 |
text_width = draw.textlength(WATERMARK_TEXT, font=font)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
return Image.open(webp_buffer)
|
42 |
-
except Exception as e:
|
43 |
-
print(f"Watermark error: {str(e)}")
|
44 |
-
return Image.open(io.BytesIO(image_bytes))
|
45 |
|
46 |
-
# =====
|
47 |
def generate_image(prompt):
|
48 |
if not prompt.strip():
|
49 |
return None, "⚠️ Please enter a prompt"
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
API_URL,
|
62 |
-
headers=headers,
|
63 |
-
json={
|
64 |
-
"inputs": prompt,
|
65 |
-
"parameters": params
|
66 |
-
},
|
67 |
-
timeout=TIMEOUT
|
68 |
)
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
if response.status_code == 200:
|
76 |
-
gen_time = time.time() - start_time
|
77 |
-
return add_watermark(response.content), f"✔️ Generated in {gen_time:.1f}s"
|
78 |
-
elif response.status_code == 503:
|
79 |
-
time.sleep(5 * (attempt + 1))
|
80 |
-
continue
|
81 |
-
else:
|
82 |
-
return None, f"⚠️ API Error: {response.text[:200]}"
|
83 |
-
except requests.Timeout:
|
84 |
-
return None, f"⚠️ Timeout: Model took >{TIMEOUT}s"
|
85 |
-
except Exception as e:
|
86 |
-
return None, f"⚠️ Error: {str(e)[:200]}"
|
87 |
-
|
88 |
-
return None, "⚠️ Failed after retries. Try again."
|
89 |
|
90 |
-
# ===== GRADIO
|
91 |
-
with gr.Blocks(title="SelamGPT
|
92 |
gr.Markdown("""
|
93 |
-
# 🎨 SelamGPT
|
94 |
-
*Optimized for
|
95 |
""")
|
96 |
|
97 |
with gr.Row():
|
98 |
-
with gr.Column(
|
99 |
prompt_input = gr.Textbox(
|
100 |
label="Describe your image",
|
101 |
-
placeholder="A
|
102 |
lines=3
|
103 |
)
|
104 |
-
|
105 |
-
generate_btn = gr.Button("Generate Image", variant="primary")
|
106 |
-
clear_btn = gr.Button("Clear")
|
107 |
|
108 |
gr.Examples(
|
109 |
examples=[
|
110 |
-
["
|
111 |
-
["
|
112 |
-
["
|
113 |
],
|
114 |
inputs=prompt_input
|
115 |
)
|
116 |
|
117 |
-
with gr.Column(
|
118 |
output_image = gr.Image(
|
119 |
-
label="Generated Image
|
120 |
type="pil",
|
121 |
-
format="webp",
|
122 |
-
height=
|
123 |
)
|
124 |
status_output = gr.Textbox(
|
125 |
label="Status",
|
@@ -129,20 +102,12 @@ with gr.Blocks(title="SelamGPT Image Generator") as demo:
|
|
129 |
generate_btn.click(
|
130 |
fn=generate_image,
|
131 |
inputs=prompt_input,
|
132 |
-
outputs=[output_image, status_output],
|
133 |
-
queue=True
|
134 |
-
)
|
135 |
-
|
136 |
-
clear_btn.click(
|
137 |
-
fn=lambda: [None, ""],
|
138 |
outputs=[output_image, status_output]
|
139 |
)
|
140 |
|
141 |
if __name__ == "__main__":
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
import gradio as gr
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
|
|
|
6 |
|
7 |
+
# ===== FREE-TIER CONFIG =====
|
|
|
|
|
|
|
|
|
8 |
WATERMARK_TEXT = "SelamGPT"
|
9 |
+
MODEL_NAME = "DeepFloyd/IF-II-L-v1.0"
|
10 |
+
CACHE_DIR = "model_cache" # For free tier storage limits
|
|
|
11 |
|
12 |
+
# ===== LIGHTWEIGHT MODEL LOAD =====
|
13 |
+
pipe = None # Lazy load to avoid cold start timeouts
|
14 |
+
|
15 |
+
def load_model():
|
16 |
+
global pipe
|
17 |
+
if pipe is None:
|
18 |
+
pipe = DiffusionPipeline.from_pretrained(
|
19 |
+
MODEL_NAME,
|
20 |
+
torch_dtype=torch.float16, # 50% VRAM reduction
|
21 |
+
variant="fp16",
|
22 |
+
cache_dir=CACHE_DIR
|
23 |
+
)
|
24 |
+
pipe.enable_model_cpu_offload() # Critical for free-tier VRAM
|
25 |
+
|
26 |
+
# ===== OPTIMIZED WATERMARK =====
|
27 |
+
def add_watermark(image):
|
28 |
try:
|
|
|
29 |
draw = ImageDraw.Draw(image)
|
30 |
+
font = ImageFont.load_default(20) # No external font needed
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
text_width = draw.textlength(WATERMARK_TEXT, font=font)
|
32 |
+
draw.text(
|
33 |
+
(image.width - text_width - 15, image.height - 30),
|
34 |
+
WATERMARK_TEXT,
|
35 |
+
font=font,
|
36 |
+
fill=(255, 255, 255)
|
37 |
+
)
|
38 |
+
return image
|
39 |
+
except Exception:
|
40 |
+
return image
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# ===== FREE-TIER GENERATION =====
|
43 |
def generate_image(prompt):
|
44 |
if not prompt.strip():
|
45 |
return None, "⚠️ Please enter a prompt"
|
46 |
|
47 |
+
try:
|
48 |
+
load_model() # Lazy load only when needed
|
49 |
+
|
50 |
+
# Free-tier optimized settings
|
51 |
+
result = pipe(
|
52 |
+
prompt=prompt,
|
53 |
+
output_type="pil",
|
54 |
+
generator=torch.Generator().manual_seed(42), # Consistent results
|
55 |
+
num_inference_steps=30, # Reduced from default 50
|
56 |
+
guidance_scale=7.0 # Balanced creativity/quality
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
)
|
58 |
+
|
59 |
+
return add_watermark(result.images[0]), "✔️ Generated (Free Tier)"
|
60 |
+
except torch.cuda.OutOfMemoryError:
|
61 |
+
return None, "⚠️ Out of VRAM - Try simpler prompt"
|
62 |
+
except Exception as e:
|
63 |
+
return None, f"⚠️ Error: {str(e)[:100]}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
# ===== GRADIO UI =====
|
66 |
+
with gr.Blocks(title="SelamGPT Pro") as demo:
|
67 |
gr.Markdown("""
|
68 |
+
# 🎨 SelamGPT (DeepFloyd IF-II-L)
|
69 |
+
*Optimized for Free Tier - 64px Base Resolution*
|
70 |
""")
|
71 |
|
72 |
with gr.Row():
|
73 |
+
with gr.Column():
|
74 |
prompt_input = gr.Textbox(
|
75 |
label="Describe your image",
|
76 |
+
placeholder="A traditional Ethiopian market...",
|
77 |
lines=3
|
78 |
)
|
79 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
|
|
|
|
80 |
|
81 |
gr.Examples(
|
82 |
examples=[
|
83 |
+
["Habesha cultural dress with intricate patterns, studio lighting"],
|
84 |
+
["Lalibela rock-hewn churches at golden hour"],
|
85 |
+
["Addis Ababa futuristic skyline, cyberpunk style"]
|
86 |
],
|
87 |
inputs=prompt_input
|
88 |
)
|
89 |
|
90 |
+
with gr.Column():
|
91 |
output_image = gr.Image(
|
92 |
+
label="Generated Image",
|
93 |
type="pil",
|
94 |
+
format="webp", # Lightweight format
|
95 |
+
height=400
|
96 |
)
|
97 |
status_output = gr.Textbox(
|
98 |
label="Status",
|
|
|
102 |
generate_btn.click(
|
103 |
fn=generate_image,
|
104 |
inputs=prompt_input,
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
outputs=[output_image, status_output]
|
106 |
)
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
+
demo.launch(
|
110 |
+
server_name="0.0.0.0",
|
111 |
+
server_port=7860,
|
112 |
+
enable_queue=False # Critical for free tier
|
113 |
+
)
|
|
|
|