import os import gradio as gr from PIL import Image, ImageDraw, ImageFont import io import torch from diffusers import DiffusionPipeline # ===== CONFIGURATION ===== MODEL_NAME = "HiDream-ai/HiDream-I1-Full" WATERMARK_TEXT = "SelamGPT" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" TORCH_DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32 # ===== MODEL LOADING ===== # Global variable for model caching (alternative to @gr.Cache) pipe = None def load_model(): global pipe if pipe is None: pipe = DiffusionPipeline.from_pretrained( MODEL_NAME, torch_dtype=TORCH_DTYPE ).to(DEVICE) # Optimizations if DEVICE == "cuda": try: pipe.enable_xformers_memory_efficient_attention() except: print("Xformers not available, using default attention") pipe.enable_attention_slicing() return pipe # ===== WATERMARK FUNCTION ===== def add_watermark(image): """Add watermark with optimized PNG output""" try: draw = ImageDraw.Draw(image) font_size = 24 try: font = ImageFont.truetype("Roboto-Bold.ttf", font_size) except: font = ImageFont.load_default(font_size) text_width = draw.textlength(WATERMARK_TEXT, font=font) x = image.width - text_width - 10 y = image.height - 34 draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128)) draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255)) # Convert to optimized PNG img_byte_arr = io.BytesIO() image.save(img_byte_arr, format='PNG', optimize=True, quality=85) img_byte_arr.seek(0) return Image.open(img_byte_arr) except Exception as e: print(f"Watermark error: {str(e)}") return image # ===== IMAGE GENERATION ===== def generate_image(prompt): if not prompt.strip(): return None, "⚠️ Please enter a prompt" try: model = load_model() image = model( prompt, num_inference_steps=30, guidance_scale=7.5 ).images[0] return add_watermark(image), "✔️ Generation successful" except torch.cuda.OutOfMemoryError: return None, "⚠️ Out of memory! Try a simpler prompt" except Exception as e: return None, f"⚠️ Error: {str(e)[:200]}" # ===== GRADIO INTERFACE ===== with gr.Blocks(theme=theme, title="SelamGPT Image Generator") as demo: gr.Markdown(""" # 🎨 SelamGPT Image Generator *Powered by HiDream-I1-Full (1024x1024 PNG output)* """) with gr.Row(): with gr.Column(scale=3): prompt_input = gr.Textbox( label="Describe your image", placeholder="A futuristic Ethiopian city with flying cars...", lines=3, max_lines=5 ) with gr.Row(): generate_btn = gr.Button("Generate Image", variant="primary") clear_btn = gr.Button("Clear") gr.Examples( examples=[ ["An ancient Aksumite warrior in cyberpunk armor, 4k detailed"], ["Traditional Ethiopian coffee ceremony in zero gravity"], ["Portrait of a Habesha queen with golden jewelry"] ], inputs=prompt_input ) with gr.Column(scale=2): output_image = gr.Image( label="Generated Image", type="pil", format="png", height=512 ) status_output = gr.Textbox( label="Status", interactive=False ) generate_btn.click( fn=generate_image, inputs=prompt_input, outputs=[output_image, status_output], queue=True ) clear_btn.click( fn=lambda: [None, ""], outputs=[output_image, status_output] ) if __name__ == "__main__": demo.queue(max_size=2) demo.launch(server_name="0.0.0.0", server_port=7860)