import os import requests import gradio as gr from PIL import Image, ImageDraw, ImageFont import io import time from concurrent.futures import ThreadPoolExecutor # ===== CONFIGURATION ===== HF_API_TOKEN = os.environ.get("HF_API_TOKEN") MODEL_NAME = "stabilityai/stable-diffusion-xl-base-1.0" # Using SDXL API_URL = f"https://api-inference.huggingface.co/models/{MODEL_NAME}" headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} WATERMARK_TEXT = "SelamGPT" MAX_RETRIES = 3 TIMEOUT = 60 # Increased for SDXL's longer processing EXECUTOR = ThreadPoolExecutor(max_workers=2) # ===== WATERMARK FUNCTION ===== def add_watermark(image_bytes): """Convert to PNG with medium quality before watermarking""" try: image = Image.open(io.BytesIO(image_bytes)).convert("RGB") # Save as medium-quality PNG to buffer png_buffer = io.BytesIO() image.save(png_buffer, format="PNG", optimize=True, quality=85) # Medium quality png_buffer.seek(0) # Add watermark to the PNG watermarked_image = Image.open(png_buffer) draw = ImageDraw.Draw(watermarked_image) font_size = 24 try: font = ImageFont.truetype("Roboto-Bold.ttf", font_size) except: font = ImageFont.load_default(font_size) text_width = draw.textlength(WATERMARK_TEXT, font=font) x = watermarked_image.width - text_width - 10 y = watermarked_image.height - 34 draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128)) draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255)) # Return as PNG bytes final_buffer = io.BytesIO() watermarked_image.save(final_buffer, format="PNG", optimize=True, quality=85) final_buffer.seek(0) return Image.open(final_buffer) except Exception as e: print(f"Watermark error: {str(e)}") return Image.open(io.BytesIO(image_bytes)) # ===== IMAGE GENERATION (SDXL-OPTIMIZED) ===== def generate_image(prompt): """Generate image with SDXL-specific parameters""" if not prompt.strip(): return None, "⚠️ Please enter a prompt" def api_call(): return requests.post( API_URL, headers=headers, json={ "inputs": prompt, "parameters": { "height": 1024, # SDXL's native resolution "width": 1024, "num_inference_steps": 30, # Better quality than 25 "guidance_scale": 7.5 # SDXL's optimal value }, "options": {"wait_for_model": True} }, timeout=TIMEOUT ) for attempt in range(MAX_RETRIES): try: future = EXECUTOR.submit(api_call) response = future.result() if response.status_code == 200: return add_watermark(response.content), "✔️ Generation successful" elif response.status_code == 503: wait_time = (attempt + 1) * 15 # Longer wait for SDXL print(f"Model loading, waiting {wait_time}s...") time.sleep(wait_time) continue else: return None, f"⚠️ API Error: {response.text[:200]}" except requests.Timeout: return None, f"⚠️ Timeout: Model took >{TIMEOUT}s to respond" except Exception as e: return None, f"⚠️ Unexpected error: {str(e)[:200]}" return None, "⚠️ Failed after multiple attempts. Please try later." # ===== GRADIO INTERFACE ===== with gr.Blocks() as demo: output_image = gr.Image( label="Generated Image", type="pil", # Force PIL/PNG output format="png", # Explicit PNG format height=512 ) with gr.Blocks(theme=theme, title="SelamGPT Image Generator") as demo: gr.Markdown(""" # 🎨 SelamGPT Image Generator *Now powered by Stable Diffusion XL (1024x1024 resolution)* """) with gr.Row(): with gr.Column(scale=3): prompt_input = gr.Textbox( label="Describe your image", placeholder="A futuristic Ethiopian city with flying cars...", lines=3, max_lines=5, elem_id="prompt-box" ) with gr.Row(): generate_btn = gr.Button("Generate Image", variant="primary") clear_btn = gr.Button("Clear") gr.Examples( examples=[ ["An ancient Aksumite warrior in cyberpunk armor, 4k detailed"], ["Traditional Ethiopian coffee ceremony in zero gravity, photorealistic"], ["Portrait of a Habesha queen with golden jewelry, studio lighting"] ], inputs=prompt_input, label="Try these SDXL-optimized prompts:" ) with gr.Column(scale=2): output_image = gr.Image( label="Generated Image (1024x1024)", height=512, elem_id="output-image" ) status_output = gr.Textbox( label="Status", interactive=False, elem_id="status-box" ) generate_btn.click( fn=generate_image, inputs=prompt_input, outputs=[output_image, status_output], queue=True, show_progress="minimal" ) clear_btn.click( fn=lambda: [None, ""], outputs=[output_image, status_output] ) if __name__ == "__main__": demo.queue(max_size=2) demo.launch(server_name="0.0.0.0", server_port=7860)