File size: 4,832 Bytes
c770256
d947512
 
 
 
 
 
 
 
 
 
 
 
 
c770256
d947512
c770256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d947512
 
 
c770256
 
d947512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c770256
d947512
 
 
c770256
d947512
 
 
 
 
 
 
c770256
d947512
 
 
 
 
 
 
 
 
 
 
 
 
 
c770256
d947512
c770256
d947512
 
 
 
 
 
 
c770256
 
d947512
 
 
 
 
 
 
 
c770256
 
 
d947512
 
 
 
 
 
 
 
c770256
d947512
 
 
 
 
 
 
 
 
 
 
c770256
 
d947512
 
c770256
 
d947512
 
 
 
 
 
 
 
 
 
 
 
c770256
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel
from typing import List, Optional, Literal
import json
import g4f
from g4f.Provider import Blackbox, RetryProvider

app = FastAPI()

# Configure Blackbox provider
g4f.Provider.Blackbox.url = "https://www.blackbox.ai/api/chat"
g4f.Provider.Blackbox.working = True

# All available models from Blackbox provider
TEXT_MODELS = [
    # Blackbox models
    "blackbox", "blackbox-pro", "blackbox-70b", "blackbox-180b",
    
    # OpenAI compatible
    "gpt-4", "gpt-4-turbo", "gpt-4o", "gpt-4o-mini", "gpt-3.5-turbo",
    
    # Anthropic
    "claude-3-opus", "claude-3-sonnet", "claude-3-haiku", "claude-3.5", "claude-3.7-sonnet",
    
    # Meta
    "llama-3-70b", "llama-3-8b", "llama-3.3-70b", "llama-2-70b",
    
    # DeepSeek
    "deepseek-chat", "deepseek-v3", "deepseek-r1", "deepseek-coder",
    
    # Other
    "o1", "o3-mini", "mixtral-8x7b", "mixtral-small-24b", "qwq-32b",
    "command-r-plus", "code-llama-70b", "gemini-pro", "gemini-1.5-flash"
]

IMAGE_MODELS = [
    "flux", "flux-pro", "dall-e-3", "stable-diffusion-xl", "playground-v2.5",
    "kandinsky-3", "deepfloyd-if", "sdxl-turbo"
]

class Message(BaseModel):
    role: Literal["system", "user", "assistant"]
    content: str

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]
    temperature: Optional[float] = 0.7
    max_tokens: Optional[int] = None
    stream: Optional[bool] = False

class ImageRequest(BaseModel):
    model: str
    prompt: str
    size: Optional[str] = "1024x1024"
    quality: Optional[Literal["standard", "hd"]] = "standard"

@app.get("/v1/models")
async def get_models():
    """Return all available models"""
    return {
        "text_models": TEXT_MODELS,
        "image_models": IMAGE_MODELS
    }

@app.post("/v1/chat/completions")
async def chat_completion(request: ChatRequest):
    """Handle text generation with Blackbox and other models"""
    if request.model not in TEXT_MODELS:
        raise HTTPException(
            status_code=400,
            detail=f"Invalid model. Available: {TEXT_MODELS}"
        )

    messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]
    
    try:
        if request.stream:
            async def stream_generator():
                response = await g4f.ChatCompletion.create_async(
                    model=request.model,
                    messages=messages,
                    provider=RetryProvider([Blackbox]),
                    temperature=request.temperature,
                    max_tokens=request.max_tokens,
                    stream=True
                )
                
                async for chunk in response:
                    if isinstance(chunk, str):
                        yield f"data: {json.dumps({'content': chunk})}\n\n"
                    elif hasattr(chunk, 'choices'):
                        content = chunk.choices[0].delta.get('content', '')
                        yield f"data: {json.dumps({'content': content})}\n\n"
                yield "data: [DONE]\n\n"

            return StreamingResponse(stream_generator(), media_type="text/event-stream")
        
        else:
            response = await g4f.ChatCompletion.create_async(
                model=request.model,
                messages=messages,
                provider=RetryProvider([Blackbox]),
                temperature=request.temperature,
                max_tokens=request.max_tokens
            )
            return {"content": str(response)}

    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/v1/images/generations")
async def generate_image(request: ImageRequest):
    """Handle image generation with Flux and other models"""
    if request.model not in IMAGE_MODELS:
        raise HTTPException(
            status_code=400,
            detail=f"Invalid model. Available: {IMAGE_MODELS}"
        )

    try:
        if request.model in ["flux", "flux-pro"]:
            image_data = g4f.ImageGeneration.create(
                prompt=request.prompt,
                model=request.model,
                provider=Blackbox,
                size=request.size
            )
            return JSONResponse({
                "url": f"data:image/png;base64,{image_data.decode('utf-8')}",
                "model": request.model
            })
        else:
            # Implementation for other image providers
            raise HTTPException(
                status_code=501,
                detail=f"{request.model} implementation pending"
            )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)