Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,336 Bytes
eb710fe dfca074 eb710fe f72cee5 a020647 eb710fe f72cee5 eb710fe a020647 eb710fe a020647 eb710fe f72cee5 a020647 f72cee5 a020647 cbec252 a020647 cbec252 f72cee5 a020647 f72cee5 a020647 f72cee5 eb710fe f72cee5 eb710fe a020647 eb710fe a020647 eb710fe a020647 eb710fe a020647 eb710fe a020647 eb710fe a020647 f72cee5 a020647 f72cee5 bcb24fd eb710fe a020647 bcb24fd eb710fe bcb24fd a020647 bcb24fd a020647 bcb24fd eb710fe bcb24fd eb710fe bcb24fd a020647 bcb24fd eb710fe bcb24fd eb710fe f72cee5 a020647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import gradio as gr
import sys
import os
import tqdm
sys.path.append(os.path.abspath(os.path.join("", "..")))
import torch
import gc
import warnings
warnings.filterwarnings("ignore")
from PIL import Image
from utils import load_models, save_model_w2w, save_model_for_diffusers
from sampling import sample_weights
from editing import get_direction, debias
from huggingface_hub import snapshot_download
global device
global generator
global unet
global vae
global text_encoder
global tokenizer
global noise_scheduler
global young_val
global pointy_val
global bags_val
device = "cuda:0"
generator = torch.Generator(device=device)
models_path = snapshot_download(repo_id="Snapchat/w2w")
mean = torch.load(f"{models_path}/mean.pt").bfloat16().to(device)
std = torch.load(f"{models_path}/std.pt").bfloat16().to(device)
v = torch.load(f"{models_path}/V.pt").bfloat16().to(device)
proj = torch.load(f"{models_path}/proj_1000pc.pt").bfloat16().to(device)
df = torch.load(f"{models_path}/identity_df.pt")
weight_dimensions = torch.load(f"{models_path}/weight_dimensions.pt")
pinverse = torch.load(f"{models_path}/pinverse_1000pc.pt").bfloat16().to(device)
unet, vae, text_encoder, tokenizer, noise_scheduler = load_models(device)
global network
def sample_model():
global unet
del unet
global network
unet, _, _, _, _ = load_models(device)
network = sample_weights(unet, proj, mean, std, v[:, :1000], device, factor = 1.00)
@torch.no_grad()
def inference( prompt, negative_prompt, guidance_scale, ddim_steps, seed):
global device
global generator
global unet
global vae
global text_encoder
global tokenizer
global noise_scheduler
generator = generator.manual_seed(seed)
latents = torch.randn(
(1, unet.in_channels, 512 // 8, 512 // 8),
generator = generator,
device = device
).bfloat16()
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
noise_scheduler.set_timesteps(ddim_steps)
latents = latents * noise_scheduler.init_noise_sigma
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
with network:
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
#guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
latents = 1 / 0.18215 * latents
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
return [image]
@torch.no_grad()
def edit_inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed, start_noise, a1, a2, a3):
global device
global generator
global unet
global vae
global text_encoder
global tokenizer
global noise_scheduler
global young
global pointy
global bags
original_weights = network.proj.clone()
edited_weights = original_weights+a1*young+a2*pointy+a3*bags
generator = generator.manual_seed(seed)
latents = torch.randn(
(1, unet.in_channels, 512 // 8, 512 // 8),
generator = generator,
device = device
).bfloat16()
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
noise_scheduler.set_timesteps(ddim_steps)
latents = latents * noise_scheduler.init_noise_sigma
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
if t>start_noise:
pass
elif t<=start_noise:
network.proj = torch.nn.Parameter(edited_weights)
network.reset()
with network:
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
#guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
latents = 1 / 0.18215 * latents
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
#reset weights back to original
network.proj = torch.nn.Parameter(original_weights)
network.reset()
return [image]
def sample_then_run():
global young_val
global pointy_val
global bags_val
global young
global pointy
global bags
sample_model()
young_val = network.proj@young[0]/(torch.norm(young)**2).item()
pointy_val = network.proj@pointy[0]/(torch.norm(pointy)**2).item()
bags_val = network.proj@bags[0]/(torch.norm(bags)**2).item()
prompt = "sks person"
negative_prompt = "low quality, blurry, unfinished, cartoon"
seed = 5
cfg = 3.0
steps = 50
image = inference( prompt, negative_prompt, cfg, steps, seed)
return image
#directions
global young
global pointy
global bags
young = get_direction(df, "Young", pinverse, 1000, device)
young = debias(young, "Male", df, pinverse, device)
young_max = torch.max(proj@young[0]/(torch.norm(young))**2).item()
young_min = torch.min(proj@young[0]/(torch.norm(young))**2).item()
pointy = get_direction(df, "Pointy_Nose", pinverse, 1000, device)
pointy_max = torch.max(proj@pointy[0]/(torch.norm(pointy))**2).item()
pointy_min = torch.min(proj@pointy[0]/(torch.norm(pointy))**2).item()
bags = get_direction(df, "Bags_Under_Eyes", pinverse, 1000, device)
bags_max = torch.max(proj@bags[0]/(torch.norm(bags))**2).item()
bags_min = torch.min(proj@bags[0]/(torch.norm(bags))**2).item()
intro = """
<div style="display: flex;align-items: center;justify-content: center">
<h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block">weights2weights</h1>
<h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Interpreting the Weight Space of Customized Diffusion Models</h3>
</div>
<p style="font-size: 0.95rem;margin: 0rem;line-height: 1.2em;margin-top:1em;display: inline-block">
<a href="https://snap-research.github.io/weights2weights/" target="_blank">project page</a> | <a href="https://arxiv.org/abs/2406.09413" target="_blank">paper</a>
|
<a href="https://huggingface.co/spaces/Snapchat/w2w-demo?duplicate=true" target="_blank" style="
display: inline-block;
">
<img style="margin-top: -1em;margin-bottom: 0em;position: absolute;" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a>
</p>
"""
with gr.Blocks(css="style.css") as demo:
gr.HTML(intro)
with gr.Row():
with gr.Column():
gallery1 = gr.Gallery(label="Identity from Sampled Model")
sample = gr.Button("Sample New Model")
gallery2 = gr.Gallery(label="Identity from Edited Model")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt",
info="Make sure to include 'sks person'" ,
placeholder="sks person",
value="sks person")
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, cartoon", value="low quality, blurry, unfinished, cartoon")
with gr.Row():
a1 = gr.Slider(label="Young", value=0, step=1, minimum=-1000000, maximum=1000000, interactive=True)
a2 = gr.Slider(label="Pointy Nose", value=0, step=1, minimum=-1000000, maximum=1000000, interactive=True)
a3 = gr.Slider(label="Undereye Bags", value=0, step=1, minimum=-1000000, maximum=1000000, interactive=True)
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
seed = gr.Number(value=5, label="Seed", interactive=True)
cfg = gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
steps = gr.Slider(label="Inference Steps", value=50, step=1, minimum=0, maximum=100, interactive=True)
injection_step = gr.Slider(label="Injection Step", value=800, step=1, minimum=0, maximum=1000, interactive=True)
submit = gr.Button("Submit")
#with gr.Column():
#gallery2 = gr.Gallery(label="Identity from Edited Model")
sample.click(fn=sample_then_run, outputs=gallery1)
submit.click(fn=edit_inference,
inputs=[prompt, negative_prompt, cfg, steps, seed, injection_step, a1, a2, a3],
outputs=gallery2)
demo.launch(share=True)
|