amildravid4292 commited on
Commit
6b4a672
·
verified ·
1 Parent(s): 6983a05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -101,13 +101,13 @@ def inference( prompt, negative_prompt, guidance_scale, ddim_steps, seed):
101
 
102
  text_input = tokenizer.value(prompt, padding="max_length", max_length=tokenizer.value.model_max_length, truncation=True, return_tensors="pt")
103
 
104
- text_embeddings = text_encoder.value(text_input.input_ids.to(device))[0]
105
 
106
  max_length = text_input.input_ids.shape[-1]
107
  uncond_input = tokenizer.value(
108
  [negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
109
  )
110
- uncond_embeddings = text_encoder.value(uncond_input.input_ids.to(device))[0]
111
  text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
112
  noise_scheduler.value.set_timesteps(ddim_steps)
113
  latents = latents * noise_scheduler.value.init_noise_sigma
@@ -141,7 +141,7 @@ def edit_inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed, st
141
  #pad to same number of PCs
142
  pcs_original = original_weights.shape[1]
143
  pcs_edits = young.value.shape[1]
144
- padding = torch.zeros((1,pcs_original-pcs_edits)).to(device)
145
  young_pad = torch.cat((young.value, padding), 1)
146
  pointy_pad = torch.cat((pointy.value, padding), 1)
147
  wavy_pad = torch.cat((wavy.value, padding), 1)
@@ -160,13 +160,13 @@ def edit_inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed, st
160
 
161
  text_input = tokenizer.value(prompt, padding="max_length", max_length=tokenizer.value.model_max_length, truncation=True, return_tensors="pt")
162
 
163
- text_embeddings = text_encoder.value(text_input.input_ids.to(device))[0]
164
 
165
  max_length = text_input.input_ids.shape[-1]
166
  uncond_input = tokenizer.value(
167
  [negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
168
  )
169
- uncond_embeddings = text_encoder.value(uncond_input.input_ids.to(device))[0]
170
  text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
171
  noise_scheduler.value.set_timesteps(ddim_steps)
172
  latents = latents * noise_scheduler.value.init_noise_sigma
 
101
 
102
  text_input = tokenizer.value(prompt, padding="max_length", max_length=tokenizer.value.model_max_length, truncation=True, return_tensors="pt")
103
 
104
+ text_embeddings = text_encoder.value(text_input.input_ids.to(device.value))[0]
105
 
106
  max_length = text_input.input_ids.shape[-1]
107
  uncond_input = tokenizer.value(
108
  [negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
109
  )
110
+ uncond_embeddings = text_encoder.value(uncond_input.input_ids.to(device.value))[0]
111
  text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
112
  noise_scheduler.value.set_timesteps(ddim_steps)
113
  latents = latents * noise_scheduler.value.init_noise_sigma
 
141
  #pad to same number of PCs
142
  pcs_original = original_weights.shape[1]
143
  pcs_edits = young.value.shape[1]
144
+ padding = torch.zeros((1,pcs_original-pcs_edits)).to(device.value)
145
  young_pad = torch.cat((young.value, padding), 1)
146
  pointy_pad = torch.cat((pointy.value, padding), 1)
147
  wavy_pad = torch.cat((wavy.value, padding), 1)
 
160
 
161
  text_input = tokenizer.value(prompt, padding="max_length", max_length=tokenizer.value.model_max_length, truncation=True, return_tensors="pt")
162
 
163
+ text_embeddings = text_encoder.value(text_input.input_ids.to(device.value))[0]
164
 
165
  max_length = text_input.input_ids.shape[-1]
166
  uncond_input = tokenizer.value(
167
  [negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
168
  )
169
+ uncond_embeddings = text_encoder.value(uncond_input.input_ids.to(device.value))[0]
170
  text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
171
  noise_scheduler.value.set_timesteps(ddim_steps)
172
  latents = latents * noise_scheduler.value.init_noise_sigma