linoyts HF staff commited on
Commit
82ba5bb
·
verified ·
1 Parent(s): 4ae0ed3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -18
app.py CHANGED
@@ -31,6 +31,7 @@ from diffusers import (
31
  )
32
  from huggingface_hub import snapshot_download
33
  import spaces
 
34
 
35
 
36
  models_path = snapshot_download(repo_id="Snapchat/w2w")
@@ -400,7 +401,7 @@ def run_inversion(net, dict, pcs, epochs, weight_decay,lr):
400
  return net, net, image
401
 
402
 
403
- @spaces.GPU
404
  def file_upload(file, net):
405
  device="cuda"
406
  weights = torch.load(file.name).to(device)
@@ -444,22 +445,23 @@ with gr.Blocks(css="style.css") as demo:
444
  net = gr.State()
445
  gr.HTML(intro)
446
 
447
- gr.Markdown("""<div style="text-align: justify;"> In this demo, you can get an identity-encoding model by sampling or inverting. To use a model previously downloaded from this demo see \"Uploading a model\" in the Advanced Options. Next, you can generate new images from it, or edit the identity encoded in the model and generate images from the edited model. We provide detailed instructions and tips at the bottom of the page.""")
 
448
  with gr.Column():
449
  with gr.Row():
450
  with gr.Column():
451
- gr.Markdown("""1) Either sample a new model, or upload an image (optionally draw a mask over the head) and click `invert`.""")
452
- sample = gr.Button("🎲 Sample New Model")
453
  input_image = gr.ImageEditor(elem_id="image_upload", type='pil', label="Reference Identity",
454
  width=512, height=512)
455
 
456
  with gr.Row():
 
457
  invert_button = gr.Button("⬆️ Invert")
458
 
459
 
460
 
461
  with gr.Column():
462
- gr.Markdown("""2) Generate images of the sampled/inverted identity or edit the identity with the sliders and generate new images with various prompts and seeds.""")
463
  gallery = gr.Image(label="Generated Image",height=512, width=512, interactive=False)
464
  submit = gr.Button("Generate")
465
 
@@ -469,7 +471,6 @@ with gr.Blocks(css="style.css") as demo:
469
  placeholder="sks person",
470
  value="sks person")
471
 
472
- seed = gr.Number(value=5, label="Seed", precision=0, interactive=True)
473
 
474
  # Editing
475
  with gr.Column():
@@ -482,21 +483,23 @@ with gr.Blocks(css="style.css") as demo:
482
 
483
 
484
  with gr.Accordion("Advanced Options", open=False):
485
- with gr.Tab("Inversion"):
486
- with gr.Row():
487
- lr = gr.Number(value=1e-1, label="Learning Rate", interactive=True)
488
- pcs = gr.Slider(label="# Principal Components", value=10000, step=1, minimum=1, maximum=10000, interactive=True)
489
- with gr.Row():
490
- epochs = gr.Slider(label="Epochs", value=800, step=1, minimum=1, maximum=2000, interactive=True)
491
- weight_decay = gr.Number(value=1e-10, label="Weight Decay", interactive=True)
492
  with gr.Tab("Sampling"):
493
- with gr.Row():
 
494
  cfg= gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
495
  steps = gr.Slider(label="Inference Steps", value=25, step=1, minimum=0, maximum=100, interactive=True)
496
  with gr.Row():
497
  negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, nudity, weapon", value="low quality, blurry, unfinished, nudity, weapon")
498
  injection_step = gr.Slider(label="Injection Step", value=800, step=1, minimum=0, maximum=1000, interactive=True)
499
 
 
 
 
 
 
 
 
 
500
  with gr.Tab("Uploading a model"):
501
  gr.Markdown("""<div style="text-align: justify;">Upload a model below downloaded from this demo.""")
502
 
@@ -544,10 +547,10 @@ with gr.Blocks(css="style.css") as demo:
544
  * For inverting a realistic photo of an identity, typically 800 epochs with lr=1e-1 and 10,000 principal components (PCs) works well. If the resulting generations have artifacted and unrealstic textures, there is probably overfitting and you may want to reduce the number of epochs or learning rate, or play with weight decay. If the generations do not look like the input photo, then you may want to increase the number of epochs.
545
  * For inverting out-of-distribution identities, such as artistic renditions of people or non-humans (e.g. the ones shown in the paper), it is recommended to use 1000 PCs, lr=1, and train for 800 epochs.
546
  * Note that if you change the number of PCs, you will probably need to change the learning rate. For less PCs, higher learning rates are typically required."""
547
-
548
-
549
- gr.Markdown(help_text1)
550
- gr.Markdown(help_text2)
551
 
552
  demo.queue().launch()
553
 
 
31
  )
32
  from huggingface_hub import snapshot_download
33
  import spaces
34
+ from gradio_imageslider import ImageSlider
35
 
36
 
37
  models_path = snapshot_download(repo_id="Snapchat/w2w")
 
401
  return net, net, image
402
 
403
 
404
+ #@spaces.GPU
405
  def file_upload(file, net):
406
  device="cuda"
407
  weights = torch.load(file.name).to(device)
 
445
  net = gr.State()
446
  gr.HTML(intro)
447
 
448
+ gr.Markdown(""" **Getting Started:** Sample a random identity or invert to get an identity-encoding model 👩🏻‍🎨(or - Upload a previously downloaded model using the `Uploading a model` option in `Advanced Options`).
449
+ **What You Can Do?** Generate new images & edit the encoded identity 👩🏻->👩🏻‍🦱. See further instructions and tips at the bottom of the page 🤗.""")
450
  with gr.Column():
451
  with gr.Row():
452
  with gr.Column():
453
+ gr.Markdown(""" sample a face -or- upload an image (optional - draw a mask over the head) and invert""")
 
454
  input_image = gr.ImageEditor(elem_id="image_upload", type='pil', label="Reference Identity",
455
  width=512, height=512)
456
 
457
  with gr.Row():
458
+ sample = gr.Button("🎲 Sample random face")
459
  invert_button = gr.Button("⬆️ Invert")
460
 
461
 
462
 
463
  with gr.Column():
464
+ gr.Markdown(""" Generate new images of the sampled/inverted identity & edit with the sliders""")
465
  gallery = gr.Image(label="Generated Image",height=512, width=512, interactive=False)
466
  submit = gr.Button("Generate")
467
 
 
471
  placeholder="sks person",
472
  value="sks person")
473
 
 
474
 
475
  # Editing
476
  with gr.Column():
 
483
 
484
 
485
  with gr.Accordion("Advanced Options", open=False):
 
 
 
 
 
 
 
486
  with gr.Tab("Sampling"):
487
+ with gr.Row():
488
+ seed = gr.Number(value=5, label="Seed", precision=0, interactive=True)
489
  cfg= gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
490
  steps = gr.Slider(label="Inference Steps", value=25, step=1, minimum=0, maximum=100, interactive=True)
491
  with gr.Row():
492
  negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, nudity, weapon", value="low quality, blurry, unfinished, nudity, weapon")
493
  injection_step = gr.Slider(label="Injection Step", value=800, step=1, minimum=0, maximum=1000, interactive=True)
494
 
495
+ with gr.Tab("Inversion"):
496
+ with gr.Row():
497
+ lr = gr.Number(value=1e-1, label="Learning Rate", interactive=True)
498
+ pcs = gr.Slider(label="# Principal Components", value=10000, step=1, minimum=1, maximum=10000, interactive=True)
499
+ with gr.Row():
500
+ epochs = gr.Slider(label="Epochs", value=800, step=1, minimum=1, maximum=2000, interactive=True)
501
+ weight_decay = gr.Number(value=1e-10, label="Weight Decay", interactive=True)
502
+
503
  with gr.Tab("Uploading a model"):
504
  gr.Markdown("""<div style="text-align: justify;">Upload a model below downloaded from this demo.""")
505
 
 
547
  * For inverting a realistic photo of an identity, typically 800 epochs with lr=1e-1 and 10,000 principal components (PCs) works well. If the resulting generations have artifacted and unrealstic textures, there is probably overfitting and you may want to reduce the number of epochs or learning rate, or play with weight decay. If the generations do not look like the input photo, then you may want to increase the number of epochs.
548
  * For inverting out-of-distribution identities, such as artistic renditions of people or non-humans (e.g. the ones shown in the paper), it is recommended to use 1000 PCs, lr=1, and train for 800 epochs.
549
  * Note that if you change the number of PCs, you will probably need to change the learning rate. For less PCs, higher learning rates are typically required."""
550
+
551
+ with gr.Accordion("💡Instructions & Tips⬇️", open=False):
552
+ gr.Markdown(help_text1)
553
+ gr.Markdown(help_text2)
554
 
555
  demo.queue().launch()
556