Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -31,6 +31,7 @@ from diffusers import (
|
|
31 |
)
|
32 |
from huggingface_hub import snapshot_download
|
33 |
import spaces
|
|
|
34 |
|
35 |
|
36 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
@@ -400,7 +401,7 @@ def run_inversion(net, dict, pcs, epochs, weight_decay,lr):
|
|
400 |
return net, net, image
|
401 |
|
402 |
|
403 |
-
|
404 |
def file_upload(file, net):
|
405 |
device="cuda"
|
406 |
weights = torch.load(file.name).to(device)
|
@@ -444,22 +445,23 @@ with gr.Blocks(css="style.css") as demo:
|
|
444 |
net = gr.State()
|
445 |
gr.HTML(intro)
|
446 |
|
447 |
-
gr.Markdown("""
|
|
|
448 |
with gr.Column():
|
449 |
with gr.Row():
|
450 |
with gr.Column():
|
451 |
-
gr.Markdown("""
|
452 |
-
sample = gr.Button("🎲 Sample New Model")
|
453 |
input_image = gr.ImageEditor(elem_id="image_upload", type='pil', label="Reference Identity",
|
454 |
width=512, height=512)
|
455 |
|
456 |
with gr.Row():
|
|
|
457 |
invert_button = gr.Button("⬆️ Invert")
|
458 |
|
459 |
|
460 |
|
461 |
with gr.Column():
|
462 |
-
gr.Markdown("""
|
463 |
gallery = gr.Image(label="Generated Image",height=512, width=512, interactive=False)
|
464 |
submit = gr.Button("Generate")
|
465 |
|
@@ -469,7 +471,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
469 |
placeholder="sks person",
|
470 |
value="sks person")
|
471 |
|
472 |
-
seed = gr.Number(value=5, label="Seed", precision=0, interactive=True)
|
473 |
|
474 |
# Editing
|
475 |
with gr.Column():
|
@@ -482,21 +483,23 @@ with gr.Blocks(css="style.css") as demo:
|
|
482 |
|
483 |
|
484 |
with gr.Accordion("Advanced Options", open=False):
|
485 |
-
with gr.Tab("Inversion"):
|
486 |
-
with gr.Row():
|
487 |
-
lr = gr.Number(value=1e-1, label="Learning Rate", interactive=True)
|
488 |
-
pcs = gr.Slider(label="# Principal Components", value=10000, step=1, minimum=1, maximum=10000, interactive=True)
|
489 |
-
with gr.Row():
|
490 |
-
epochs = gr.Slider(label="Epochs", value=800, step=1, minimum=1, maximum=2000, interactive=True)
|
491 |
-
weight_decay = gr.Number(value=1e-10, label="Weight Decay", interactive=True)
|
492 |
with gr.Tab("Sampling"):
|
493 |
-
with gr.Row():
|
|
|
494 |
cfg= gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
|
495 |
steps = gr.Slider(label="Inference Steps", value=25, step=1, minimum=0, maximum=100, interactive=True)
|
496 |
with gr.Row():
|
497 |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, nudity, weapon", value="low quality, blurry, unfinished, nudity, weapon")
|
498 |
injection_step = gr.Slider(label="Injection Step", value=800, step=1, minimum=0, maximum=1000, interactive=True)
|
499 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
with gr.Tab("Uploading a model"):
|
501 |
gr.Markdown("""<div style="text-align: justify;">Upload a model below downloaded from this demo.""")
|
502 |
|
@@ -544,10 +547,10 @@ with gr.Blocks(css="style.css") as demo:
|
|
544 |
* For inverting a realistic photo of an identity, typically 800 epochs with lr=1e-1 and 10,000 principal components (PCs) works well. If the resulting generations have artifacted and unrealstic textures, there is probably overfitting and you may want to reduce the number of epochs or learning rate, or play with weight decay. If the generations do not look like the input photo, then you may want to increase the number of epochs.
|
545 |
* For inverting out-of-distribution identities, such as artistic renditions of people or non-humans (e.g. the ones shown in the paper), it is recommended to use 1000 PCs, lr=1, and train for 800 epochs.
|
546 |
* Note that if you change the number of PCs, you will probably need to change the learning rate. For less PCs, higher learning rates are typically required."""
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
|
552 |
demo.queue().launch()
|
553 |
|
|
|
31 |
)
|
32 |
from huggingface_hub import snapshot_download
|
33 |
import spaces
|
34 |
+
from gradio_imageslider import ImageSlider
|
35 |
|
36 |
|
37 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
|
|
401 |
return net, net, image
|
402 |
|
403 |
|
404 |
+
#@spaces.GPU
|
405 |
def file_upload(file, net):
|
406 |
device="cuda"
|
407 |
weights = torch.load(file.name).to(device)
|
|
|
445 |
net = gr.State()
|
446 |
gr.HTML(intro)
|
447 |
|
448 |
+
gr.Markdown(""" **Getting Started:** Sample a random identity or invert to get an identity-encoding model 👩🏻🎨(or - Upload a previously downloaded model using the `Uploading a model` option in `Advanced Options`).
|
449 |
+
**What You Can Do?** Generate new images & edit the encoded identity 👩🏻->👩🏻🦱. See further instructions and tips at the bottom of the page 🤗.""")
|
450 |
with gr.Column():
|
451 |
with gr.Row():
|
452 |
with gr.Column():
|
453 |
+
gr.Markdown(""" ❶ sample a face -or- upload an image (optional - draw a mask over the head) and invert""")
|
|
|
454 |
input_image = gr.ImageEditor(elem_id="image_upload", type='pil', label="Reference Identity",
|
455 |
width=512, height=512)
|
456 |
|
457 |
with gr.Row():
|
458 |
+
sample = gr.Button("🎲 Sample random face")
|
459 |
invert_button = gr.Button("⬆️ Invert")
|
460 |
|
461 |
|
462 |
|
463 |
with gr.Column():
|
464 |
+
gr.Markdown("""❷ Generate new images of the sampled/inverted identity & edit with the sliders""")
|
465 |
gallery = gr.Image(label="Generated Image",height=512, width=512, interactive=False)
|
466 |
submit = gr.Button("Generate")
|
467 |
|
|
|
471 |
placeholder="sks person",
|
472 |
value="sks person")
|
473 |
|
|
|
474 |
|
475 |
# Editing
|
476 |
with gr.Column():
|
|
|
483 |
|
484 |
|
485 |
with gr.Accordion("Advanced Options", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
with gr.Tab("Sampling"):
|
487 |
+
with gr.Row():
|
488 |
+
seed = gr.Number(value=5, label="Seed", precision=0, interactive=True)
|
489 |
cfg= gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
|
490 |
steps = gr.Slider(label="Inference Steps", value=25, step=1, minimum=0, maximum=100, interactive=True)
|
491 |
with gr.Row():
|
492 |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, nudity, weapon", value="low quality, blurry, unfinished, nudity, weapon")
|
493 |
injection_step = gr.Slider(label="Injection Step", value=800, step=1, minimum=0, maximum=1000, interactive=True)
|
494 |
|
495 |
+
with gr.Tab("Inversion"):
|
496 |
+
with gr.Row():
|
497 |
+
lr = gr.Number(value=1e-1, label="Learning Rate", interactive=True)
|
498 |
+
pcs = gr.Slider(label="# Principal Components", value=10000, step=1, minimum=1, maximum=10000, interactive=True)
|
499 |
+
with gr.Row():
|
500 |
+
epochs = gr.Slider(label="Epochs", value=800, step=1, minimum=1, maximum=2000, interactive=True)
|
501 |
+
weight_decay = gr.Number(value=1e-10, label="Weight Decay", interactive=True)
|
502 |
+
|
503 |
with gr.Tab("Uploading a model"):
|
504 |
gr.Markdown("""<div style="text-align: justify;">Upload a model below downloaded from this demo.""")
|
505 |
|
|
|
547 |
* For inverting a realistic photo of an identity, typically 800 epochs with lr=1e-1 and 10,000 principal components (PCs) works well. If the resulting generations have artifacted and unrealstic textures, there is probably overfitting and you may want to reduce the number of epochs or learning rate, or play with weight decay. If the generations do not look like the input photo, then you may want to increase the number of epochs.
|
548 |
* For inverting out-of-distribution identities, such as artistic renditions of people or non-humans (e.g. the ones shown in the paper), it is recommended to use 1000 PCs, lr=1, and train for 800 epochs.
|
549 |
* Note that if you change the number of PCs, you will probably need to change the learning rate. For less PCs, higher learning rates are typically required."""
|
550 |
+
|
551 |
+
with gr.Accordion("💡Instructions & Tips⬇️", open=False):
|
552 |
+
gr.Markdown(help_text1)
|
553 |
+
gr.Markdown(help_text2)
|
554 |
|
555 |
demo.queue().launch()
|
556 |
|