Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -137,7 +137,7 @@ def sample_then_run(net):
|
|
137 |
cfg = 3.0
|
138 |
steps = 25
|
139 |
image = inference(net, prompt, negative_prompt, cfg, steps, seed)
|
140 |
-
return net,
|
141 |
|
142 |
@torch.no_grad()
|
143 |
@spaces.GPU()
|
@@ -182,9 +182,9 @@ def inference(net, prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
|
182 |
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
|
183 |
latent_model_input = torch.cat([latents] * 2)
|
184 |
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
|
189 |
#guidance
|
190 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
@@ -511,7 +511,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
511 |
# outputs = [input_image, file_output])
|
512 |
|
513 |
|
514 |
-
sample.click(fn=sample_then_run,inputs = [net], outputs=[net, input_image])
|
515 |
|
516 |
submit.click(
|
517 |
fn=edit_inference, inputs=[net, prompt, negative_prompt, cfg, steps, seed, injection_step, a1, a2, a3, a4], outputs=[net, gallery]
|
|
|
137 |
cfg = 3.0
|
138 |
steps = 25
|
139 |
image = inference(net, prompt, negative_prompt, cfg, steps, seed)
|
140 |
+
return net,net,image
|
141 |
|
142 |
@torch.no_grad()
|
143 |
@spaces.GPU()
|
|
|
182 |
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
|
183 |
latent_model_input = torch.cat([latents] * 2)
|
184 |
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
185 |
+
with torch.no_grad():
|
186 |
+
with network:
|
187 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
188 |
|
189 |
#guidance
|
190 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
|
511 |
# outputs = [input_image, file_output])
|
512 |
|
513 |
|
514 |
+
sample.click(fn=sample_then_run,inputs = [net], outputs=[net, file_output, input_image])
|
515 |
|
516 |
submit.click(
|
517 |
fn=edit_inference, inputs=[net, prompt, negative_prompt, cfg, steps, seed, injection_step, a1, a2, a3, a4], outputs=[net, gallery]
|