Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -88,166 +88,166 @@ class main():
|
|
88 |
thick = debias(thick, "Heavy_Makeup", df, pinverse, device)
|
89 |
self.thick = thick
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
(1, self.unet.in_channels, 512 // 8, 512 // 8),
|
102 |
generator = generator,
|
103 |
device = self.device
|
104 |
).bfloat16()
|
105 |
|
106 |
|
107 |
-
|
108 |
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
|
113 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
114 |
)
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
#guidance
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
|
136 |
|
137 |
-
|
138 |
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
|
154 |
|
155 |
-
|
156 |
|
157 |
-
|
158 |
-
|
159 |
(1, self.unet.in_channels, 512 // 8, 512 // 8),
|
160 |
generator = generator,
|
161 |
device = self.device
|
162 |
).bfloat16()
|
163 |
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
170 |
-
|
171 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
172 |
)
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
|
178 |
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
|
190 |
|
191 |
-
|
192 |
-
|
193 |
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
|
204 |
-
|
205 |
|
206 |
-
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
|
212 |
-
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
|
226 |
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
|
249 |
-
|
250 |
-
|
251 |
unet,
|
252 |
rank=1,
|
253 |
multiplier=1.0,
|
@@ -255,87 +255,87 @@ class main():
|
|
255 |
train_method="xattn-strict"
|
256 |
).to(device, torch.bfloat16)
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
|
265 |
-
|
266 |
-
|
267 |
transforms.RandomCrop(512),
|
268 |
transforms.ToTensor(),
|
269 |
transforms.Normalize([0.5], [0.5])])
|
270 |
|
271 |
|
272 |
-
|
273 |
-
|
274 |
|
275 |
-
|
276 |
-
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
|
324 |
|
325 |
-
|
326 |
-
|
327 |
|
328 |
-
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
|
335 |
-
|
336 |
|
337 |
|
338 |
-
|
339 |
unet,
|
340 |
rank=1,
|
341 |
multiplier=1.0,
|
@@ -344,13 +344,13 @@ class main():
|
|
344 |
).to(device, torch.bfloat16)
|
345 |
|
346 |
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
|
355 |
|
356 |
|
|
|
88 |
thick = debias(thick, "Heavy_Makeup", df, pinverse, device)
|
89 |
self.thick = thick
|
90 |
|
91 |
+
def sample_model(self):
|
92 |
+
self.unet, _, _, _, _ = load_models(self.device)
|
93 |
+
self.network = sample_weights(self.unet, self.proj, self.mean, self.std, self.v[:, :1000], self.device, factor = 1.00)
|
94 |
|
95 |
|
96 |
+
@torch.no_grad()
|
97 |
+
@spaces.GPU
|
98 |
+
def inference(self, prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
99 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
100 |
+
latents = torch.randn(
|
101 |
(1, self.unet.in_channels, 512 // 8, 512 // 8),
|
102 |
generator = generator,
|
103 |
device = self.device
|
104 |
).bfloat16()
|
105 |
|
106 |
|
107 |
+
text_input = self.tokenizer(prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
108 |
|
109 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
|
110 |
|
111 |
+
max_length = text_input.input_ids.shape[-1]
|
112 |
+
uncond_input = self.tokenizer(
|
113 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
114 |
)
|
115 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
|
116 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
117 |
+
self.noise_scheduler.set_timesteps(ddim_steps)
|
118 |
+
latents = latents * self.noise_scheduler.init_noise_sigma
|
119 |
|
120 |
+
for i,t in enumerate(tqdm.tqdm(self.noise_scheduler.timesteps)):
|
121 |
+
latent_model_input = torch.cat([latents] * 2)
|
122 |
+
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
123 |
+
with self.network:
|
124 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
125 |
#guidance
|
126 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
127 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
128 |
+
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
129 |
|
130 |
+
latents = 1 / 0.18215 * latents
|
131 |
+
image = self.vae.decode(latents).sample
|
132 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
133 |
+
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
134 |
|
135 |
+
image = Image.fromarray((image * 255).round().astype("uint8"))
|
136 |
|
137 |
+
return image
|
138 |
|
139 |
|
140 |
+
@torch.no_grad()
|
141 |
+
@spaces.GPU
|
142 |
+
def edit_inference(self, prompt, negative_prompt, guidance_scale, ddim_steps, seed, start_noise, a1, a2, a3, a4):
|
143 |
+
original_weights = self,network.proj.clone()
|
144 |
|
145 |
+
#pad to same number of PCs
|
146 |
+
pcs_original = original_weights.shape[1]
|
147 |
+
pcs_edits = self.young.shape[1]
|
148 |
+
padding = torch.zeros((1,pcs_original-pcs_edits)).to(device)
|
149 |
+
young_pad = torch.cat((self.young, padding), 1)
|
150 |
+
pointy_pad = torch.cat((self.pointy, padding), 1)
|
151 |
+
wavy_pad = torch.cat((self.wavy, padding), 1)
|
152 |
+
thick_pad = torch.cat((self.thick, padding), 1)
|
153 |
|
154 |
|
155 |
+
edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*2e6*thick_pad
|
156 |
|
157 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
158 |
+
latents = torch.randn(
|
159 |
(1, self.unet.in_channels, 512 // 8, 512 // 8),
|
160 |
generator = generator,
|
161 |
device = self.device
|
162 |
).bfloat16()
|
163 |
|
164 |
|
165 |
+
text_input = self.tokenizer(prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
166 |
|
167 |
+
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
168 |
|
169 |
+
max_length = text_input.input_ids.shape[-1]
|
170 |
+
uncond_input = tokenizer(
|
171 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
172 |
)
|
173 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
|
174 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
175 |
+
noise_scheduler.set_timesteps(ddim_steps)
|
176 |
+
latents = latents * noise_scheduler.init_noise_sigma
|
177 |
|
178 |
|
179 |
|
180 |
+
for i,t in enumerate(tqdm.tqdm(self.noise_scheduler.timesteps)):
|
181 |
+
latent_model_input = torch.cat([latents] * 2)
|
182 |
+
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
183 |
|
184 |
+
if t>start_noise:
|
185 |
+
pass
|
186 |
+
elif t<=start_noise:
|
187 |
+
self.network.proj = torch.nn.Parameter(edited_weights)
|
188 |
+
self.network.reset()
|
189 |
|
190 |
|
191 |
+
with self.network:
|
192 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
193 |
|
194 |
|
195 |
+
#guidance
|
196 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
197 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
198 |
+
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
199 |
|
200 |
+
latents = 1 / 0.18215 * latents
|
201 |
+
image = self.vae.decode(latents).sample
|
202 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
203 |
|
204 |
+
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
205 |
|
206 |
+
image = Image.fromarray((image * 255).round().astype("uint8"))
|
207 |
|
208 |
+
#reset weights back to original
|
209 |
+
self.network.proj = torch.nn.Parameter(original_weights)
|
210 |
+
self.network.reset()
|
211 |
|
212 |
+
return image
|
213 |
|
214 |
+
@spaces.GPU
|
215 |
+
def sample_then_run(self):
|
216 |
+
sample_model()
|
217 |
+
prompt = "sks person"
|
218 |
+
negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
|
219 |
+
seed = 5
|
220 |
+
cfg = 3.0
|
221 |
+
steps = 25
|
222 |
+
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
223 |
+
torch.save(self.network.proj, "model.pt" )
|
224 |
+
return image, "model.pt"
|
225 |
|
226 |
|
227 |
|
228 |
+
class CustomImageDataset(Dataset):
|
229 |
+
def __init__(self, images, transform=None):
|
230 |
+
self.images = images
|
231 |
+
self.transform = transform
|
232 |
+
|
233 |
+
def __len__(self):
|
234 |
+
return len(self.images)
|
235 |
+
|
236 |
+
def __getitem__(self, idx):
|
237 |
+
image = self.images[idx]
|
238 |
+
if self.transform:
|
239 |
+
image = self.transform(image)
|
240 |
+
return image
|
241 |
+
|
242 |
+
@spaces.GPU
|
243 |
+
def invert(self, image, mask, pcs=10000, epochs=400, weight_decay = 1e-10, lr=1e-1):
|
244 |
|
245 |
+
del unet
|
246 |
+
del network
|
247 |
+
unet, _, _, _, _ = load_models(device)
|
248 |
|
249 |
+
proj = torch.zeros(1,pcs).bfloat16().to(device)
|
250 |
+
network = LoRAw2w( proj, mean, std, v[:, :pcs],
|
251 |
unet,
|
252 |
rank=1,
|
253 |
multiplier=1.0,
|
|
|
255 |
train_method="xattn-strict"
|
256 |
).to(device, torch.bfloat16)
|
257 |
|
258 |
+
### load mask
|
259 |
+
mask = transforms.Resize((64,64), interpolation=transforms.InterpolationMode.BILINEAR)(mask)
|
260 |
+
mask = torchvision.transforms.functional.pil_to_tensor(mask).unsqueeze(0).to(device).bfloat16()[:,0,:,:].unsqueeze(1)
|
261 |
+
### check if an actual mask was draw, otherwise mask is just all ones
|
262 |
+
if torch.sum(mask) == 0:
|
263 |
+
mask = torch.ones((1,1,64,64)).to(device).bfloat16()
|
264 |
|
265 |
+
### single image dataset
|
266 |
+
image_transforms = transforms.Compose([transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
|
267 |
transforms.RandomCrop(512),
|
268 |
transforms.ToTensor(),
|
269 |
transforms.Normalize([0.5], [0.5])])
|
270 |
|
271 |
|
272 |
+
train_dataset = CustomImageDataset(image, transform=image_transforms)
|
273 |
+
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=True)
|
274 |
|
275 |
+
### optimizer
|
276 |
+
optim = torch.optim.Adam(network.parameters(), lr=lr, weight_decay=weight_decay)
|
277 |
|
278 |
+
### training loop
|
279 |
+
unet.train()
|
280 |
+
for epoch in tqdm.tqdm(range(epochs)):
|
281 |
+
for batch in train_dataloader:
|
282 |
+
### prepare inputs
|
283 |
+
batch = batch.to(device).bfloat16()
|
284 |
+
latents = vae.encode(batch).latent_dist.sample()
|
285 |
+
latents = latents*0.18215
|
286 |
+
noise = torch.randn_like(latents)
|
287 |
+
bsz = latents.shape[0]
|
288 |
|
289 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
290 |
+
timesteps = timesteps.long()
|
291 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
292 |
+
text_input = tokenizer("sks person", padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
293 |
+
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
294 |
+
|
295 |
+
### loss + sgd step
|
296 |
+
with network:
|
297 |
+
model_pred = unet(noisy_latents, timesteps, text_embeddings).sample
|
298 |
+
loss = torch.nn.functional.mse_loss(mask*model_pred.float(), mask*noise.float(), reduction="mean")
|
299 |
+
optim.zero_grad()
|
300 |
+
loss.backward()
|
301 |
+
optim.step()
|
302 |
+
|
303 |
+
### return optimized network
|
304 |
+
return network
|
305 |
|
306 |
|
307 |
+
@spaces.GPU
|
308 |
+
def run_inversion(self, dict, pcs, epochs, weight_decay,lr):
|
309 |
+
init_image = dict["image"].convert("RGB").resize((512, 512))
|
310 |
+
mask = dict["mask"].convert("RGB").resize((512, 512))
|
311 |
+
network = invert([init_image], mask, pcs, epochs, weight_decay,lr)
|
312 |
+
|
313 |
+
|
314 |
+
#sample an image
|
315 |
+
prompt = "sks person"
|
316 |
+
negative_prompt = "low quality, blurry, unfinished, nudity"
|
317 |
+
seed = 5
|
318 |
+
cfg = 3.0
|
319 |
+
steps = 25
|
320 |
+
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
321 |
+
torch.save(network.proj, "model.pt" )
|
322 |
+
return image, "model.pt"
|
323 |
|
324 |
|
325 |
+
@spaces.GPU
|
326 |
+
def file_upload(self, file):
|
327 |
|
328 |
+
proj = torch.load(file.name).to(device)
|
329 |
|
330 |
+
#pad to 10000 Principal components to keep everything consistent
|
331 |
+
pcs = proj.shape[1]
|
332 |
+
padding = torch.zeros((1,10000-pcs)).to(device)
|
333 |
+
proj = torch.cat((proj, padding), 1)
|
334 |
|
335 |
+
unet, _, _, _, _ = load_models(device)
|
336 |
|
337 |
|
338 |
+
network = LoRAw2w( proj, mean, std, v[:, :10000],
|
339 |
unet,
|
340 |
rank=1,
|
341 |
multiplier=1.0,
|
|
|
344 |
).to(device, torch.bfloat16)
|
345 |
|
346 |
|
347 |
+
prompt = "sks person"
|
348 |
+
negative_prompt = "low quality, blurry, unfinished, nudity"
|
349 |
+
seed = 5
|
350 |
+
cfg = 3.0
|
351 |
+
steps = 25
|
352 |
+
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
353 |
+
return image
|
354 |
|
355 |
|
356 |
|