Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -42,53 +42,85 @@ pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt", map_location=to
|
|
42 |
|
43 |
unet.value, vae.value, text_encoder.value, tokenizer.value, noise_scheduler.value = load_models(device.value)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def sample_model():
|
46 |
-
unet.value, _, _, _, _ = load_models(device)
|
47 |
-
network.value = sample_weights(unet, proj, mean, std, v[:, :1000], device, factor = 1.00)
|
48 |
|
49 |
@torch.no_grad()
|
50 |
@spaces.GPU
|
51 |
def inference( prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
52 |
-
|
53 |
-
|
54 |
-
global unet
|
55 |
-
global vae
|
56 |
-
global text_encoder
|
57 |
-
global tokenizer
|
58 |
-
global noise_scheduler
|
59 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
60 |
latents = torch.randn(
|
61 |
(1, unet.in_channels, 512 // 8, 512 // 8),
|
62 |
generator = generator,
|
63 |
-
device = device
|
64 |
).bfloat16()
|
65 |
|
66 |
|
67 |
-
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
68 |
|
69 |
-
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
70 |
|
71 |
max_length = text_input.input_ids.shape[-1]
|
72 |
-
uncond_input = tokenizer(
|
73 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
74 |
)
|
75 |
-
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
|
76 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
77 |
-
noise_scheduler.set_timesteps(ddim_steps)
|
78 |
-
latents = latents * noise_scheduler.init_noise_sigma
|
79 |
|
80 |
-
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
|
81 |
latent_model_input = torch.cat([latents] * 2)
|
82 |
-
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
83 |
-
with network:
|
84 |
-
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
85 |
#guidance
|
86 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
87 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
88 |
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
89 |
|
90 |
latents = 1 / 0.18215 * latents
|
91 |
-
image = vae.decode(latents).sample
|
92 |
image = (image / 2 + 0.5).clamp(0, 1)
|
93 |
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
94 |
|
@@ -100,78 +132,66 @@ def inference( prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
|
100 |
@torch.no_grad()
|
101 |
@spaces.GPU
|
102 |
def edit_inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed, start_noise, a1, a2, a3, a4):
|
103 |
-
|
104 |
-
|
105 |
-
#global generator
|
106 |
-
global unet
|
107 |
-
global vae
|
108 |
-
global text_encoder
|
109 |
-
global tokenizer
|
110 |
-
global noise_scheduler
|
111 |
-
global young
|
112 |
-
global pointy
|
113 |
-
global wavy
|
114 |
-
global thick
|
115 |
-
|
116 |
-
original_weights = network.proj.clone()
|
117 |
|
118 |
#pad to same number of PCs
|
119 |
pcs_original = original_weights.shape[1]
|
120 |
-
pcs_edits = young.shape[1]
|
121 |
padding = torch.zeros((1,pcs_original-pcs_edits)).to(device)
|
122 |
-
young_pad = torch.cat((young, padding), 1)
|
123 |
-
pointy_pad = torch.cat((pointy, padding), 1)
|
124 |
-
wavy_pad = torch.cat((wavy, padding), 1)
|
125 |
-
thick_pad = torch.cat((thick, padding), 1)
|
126 |
|
127 |
|
128 |
edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*2e6*thick_pad
|
129 |
|
130 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
131 |
latents = torch.randn(
|
132 |
(1, unet.in_channels, 512 // 8, 512 // 8),
|
133 |
generator = generator,
|
134 |
-
device = device
|
135 |
).bfloat16()
|
136 |
|
137 |
|
138 |
-
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
139 |
|
140 |
-
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
141 |
|
142 |
max_length = text_input.input_ids.shape[-1]
|
143 |
-
uncond_input = tokenizer(
|
144 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
145 |
)
|
146 |
-
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
|
147 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
148 |
-
noise_scheduler.set_timesteps(ddim_steps)
|
149 |
-
latents = latents * noise_scheduler.init_noise_sigma
|
150 |
|
151 |
|
152 |
|
153 |
-
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
|
154 |
latent_model_input = torch.cat([latents] * 2)
|
155 |
-
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
156 |
|
157 |
if t>start_noise:
|
158 |
pass
|
159 |
elif t<=start_noise:
|
160 |
-
network.proj = torch.nn.Parameter(edited_weights)
|
161 |
-
network.reset()
|
162 |
|
163 |
|
164 |
with network:
|
165 |
-
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
166 |
|
167 |
|
168 |
#guidance
|
169 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
170 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
171 |
-
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
172 |
|
173 |
latents = 1 / 0.18215 * latents
|
174 |
-
image = vae.decode(latents).sample
|
175 |
image = (image / 2 + 0.5).clamp(0, 1)
|
176 |
|
177 |
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
@@ -179,8 +199,8 @@ def edit_inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed, st
|
|
179 |
image = Image.fromarray((image * 255).round().astype("uint8"))
|
180 |
|
181 |
#reset weights back to original
|
182 |
-
network.proj = torch.nn.Parameter(original_weights)
|
183 |
-
network.reset()
|
184 |
|
185 |
return image
|
186 |
|
@@ -193,52 +213,9 @@ def sample_then_run():
|
|
193 |
cfg = 3.0
|
194 |
steps = 25
|
195 |
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
196 |
-
torch.save(network.proj, "model.pt" )
|
197 |
return image, "model.pt"
|
198 |
|
199 |
-
#@spaces.GPU
|
200 |
-
def start_items():
|
201 |
-
print("Starting items")
|
202 |
-
global young
|
203 |
-
global pointy
|
204 |
-
global wavy
|
205 |
-
global thick
|
206 |
-
young = get_direction(df, "Young", pinverse, 1000, device)
|
207 |
-
young = debias(young, "Male", df, pinverse, device)
|
208 |
-
young = debias(young, "Pointy_Nose", df, pinverse, device)
|
209 |
-
young = debias(young, "Wavy_Hair", df, pinverse, device)
|
210 |
-
young = debias(young, "Chubby", df, pinverse, device)
|
211 |
-
young = debias(young, "No_Beard", df, pinverse, device)
|
212 |
-
young = debias(young, "Mustache", df, pinverse, device)
|
213 |
-
|
214 |
-
pointy = get_direction(df, "Pointy_Nose", pinverse, 1000, device)
|
215 |
-
pointy = debias(pointy, "Young", df, pinverse, device)
|
216 |
-
pointy = debias(pointy, "Male", df, pinverse, device)
|
217 |
-
pointy = debias(pointy, "Wavy_Hair", df, pinverse, device)
|
218 |
-
pointy = debias(pointy, "Chubby", df, pinverse, device)
|
219 |
-
pointy = debias(pointy, "Heavy_Makeup", df, pinverse, device)
|
220 |
-
|
221 |
-
wavy = get_direction(df, "Wavy_Hair", pinverse, 1000, device)
|
222 |
-
wavy = debias(wavy, "Young", df, pinverse, device)
|
223 |
-
wavy = debias(wavy, "Male", df, pinverse, device)
|
224 |
-
wavy = debias(wavy, "Pointy_Nose", df, pinverse, device)
|
225 |
-
wavy = debias(wavy, "Chubby", df, pinverse, device)
|
226 |
-
wavy = debias(wavy, "Heavy_Makeup", df, pinverse, device)
|
227 |
-
|
228 |
-
thick = get_direction(df, "Bushy_Eyebrows", pinverse, 1000, device)
|
229 |
-
thick = debias(thick, "Male", df, pinverse, device)
|
230 |
-
thick = debias(thick, "Young", df, pinverse, device)
|
231 |
-
thick = debias(thick, "Pointy_Nose", df, pinverse, device)
|
232 |
-
thick = debias(thick, "Wavy_Hair", df, pinverse, device)
|
233 |
-
thick = debias(thick, "Mustache", df, pinverse, device)
|
234 |
-
thick = debias(thick, "No_Beard", df, pinverse, device)
|
235 |
-
thick = debias(thick, "Sideburns", df, pinverse, device)
|
236 |
-
thick = debias(thick, "Big_Nose", df, pinverse, device)
|
237 |
-
thick = debias(thick, "Big_Lips", df, pinverse, device)
|
238 |
-
thick = debias(thick, "Black_Hair", df, pinverse, device)
|
239 |
-
thick = debias(thick, "Brown_Hair", df, pinverse, device)
|
240 |
-
thick = debias(thick, "Pale_Skin", df, pinverse, device)
|
241 |
-
thick = debias(thick, "Heavy_Makeup", df, pinverse, device)
|
242 |
|
243 |
class CustomImageDataset(Dataset):
|
244 |
def __init__(self, images, transform=None):
|
|
|
42 |
|
43 |
unet.value, vae.value, text_encoder.value, tokenizer.value, noise_scheduler.value = load_models(device.value)
|
44 |
|
45 |
+
|
46 |
+
gr.State(young) = get_direction(df, "Young", pinverse, 1000, device.value)
|
47 |
+
young.value = debias(young.value, "Male", df, pinverse, device.value)
|
48 |
+
young.value = debias(young.value, "Pointy_Nose", df, pinverse, device.value)
|
49 |
+
young.value = debias(young.value, "Wavy_Hair", df, pinverse, device.value)
|
50 |
+
young.value = debias(young.value, "Chubby", df, pinverse, device.value)
|
51 |
+
young.value = debias(young.value, "No_Beard", df, pinverse, device.value)
|
52 |
+
young.value = debias(young.value, "Mustache", df, pinverse, device.value)
|
53 |
+
|
54 |
+
gr.State(pointy) = get_direction(df, "Pointy_Nose", pinverse, 1000, device.value)
|
55 |
+
pointy.value = debias(pointy.value, "Young", df, pinverse, device.value)
|
56 |
+
pointy.value = debias(pointy.value, "Male", df, pinverse, device.value)
|
57 |
+
pointy.value = debias(pointy.value, "Wavy_Hair", df, pinverse, device.value)
|
58 |
+
pointy.value = debias(pointy.value, "Chubby", df, pinverse, device.value)
|
59 |
+
pointy.value = debias(pointy.value, "Heavy_Makeup", df, pinverse, device.value)
|
60 |
+
|
61 |
+
gr.State(wavy) = get_direction(df, "Wavy_Hair", pinverse, 1000, device.value)
|
62 |
+
wavy.value = debias(wavy.value, "Young", df, pinverse, device.value)
|
63 |
+
wavy.value = debias(wavy.value, "Male", df, pinverse, device.value)
|
64 |
+
wavy.value = debias(wavy.value, "Pointy_Nose", df, pinverse, device.value)
|
65 |
+
wavy.value = debias(wavy.value, "Chubby", df, pinverse, device.value)
|
66 |
+
wavy.value = debias(wavy.value, "Heavy_Makeup", df, pinverse, device.value)
|
67 |
+
|
68 |
+
gr.State(thick) = get_direction(df, "Bushy_Eyebrows", pinverse, 1000, device.value)
|
69 |
+
thick.value = debias(thick.value, "Male", df, pinverse, device.value)
|
70 |
+
thick.value = debias(thick.value, "Young", df, pinverse, device.value)
|
71 |
+
thick.value = debias(thick.value, "Pointy_Nose", df, pinverse, device.value)
|
72 |
+
thick.value = debias(thick.value, "Wavy_Hair", df, pinverse, device.value)
|
73 |
+
thick.value = debias(thick.value, "Mustache", df, pinverse, device.value)
|
74 |
+
thick.value = debias(thick.value, "No_Beard", df, pinverse, device.value)
|
75 |
+
thick.value = debias(thick.value, "Sideburns", df, pinverse, device.value)
|
76 |
+
thick.value = debias(thick.value, "Big_Nose", df, pinverse, device.value)
|
77 |
+
thick.value = debias(thick.value, "Big_Lips", df, pinverse, device.value)
|
78 |
+
thick.value = debias(thick.value, "Black_Hair", df, pinverse, device.value)
|
79 |
+
thick.value = debias(thick.value, "Brown_Hair", df, pinverse, device.value)
|
80 |
+
thick.value = debias(thick.value, "Pale_Skin", df, pinverse, device.value)
|
81 |
+
thick.value = debias(thick.value, "Heavy_Makeup", df, pinverse, device.value)
|
82 |
+
|
83 |
def sample_model():
|
84 |
+
unet.value, _, _, _, _ = load_models(device.value)
|
85 |
+
network.value = sample_weights(unet.value, proj.value, mean.value, std.value, v[:, :1000], device.value, factor = 1.00)
|
86 |
|
87 |
@torch.no_grad()
|
88 |
@spaces.GPU
|
89 |
def inference( prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
90 |
+
|
91 |
+
generator = torch.Generator(device=device.value).manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
latents = torch.randn(
|
93 |
(1, unet.in_channels, 512 // 8, 512 // 8),
|
94 |
generator = generator,
|
95 |
+
device = device.value
|
96 |
).bfloat16()
|
97 |
|
98 |
|
99 |
+
text_input = tokenizer.value(prompt, padding="max_length", max_length=tokenizer.value.model_max_length, truncation=True, return_tensors="pt")
|
100 |
|
101 |
+
text_embeddings = text_encoder.value(text_input.input_ids.to(device))[0]
|
102 |
|
103 |
max_length = text_input.input_ids.shape[-1]
|
104 |
+
uncond_input = tokenizer.value(
|
105 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
106 |
)
|
107 |
+
uncond_embeddings = text_encoder.value(uncond_input.input_ids.to(device))[0]
|
108 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
109 |
+
noise_scheduler.value.set_timesteps(ddim_steps)
|
110 |
+
latents = latents * noise_scheduler.value.init_noise_sigma
|
111 |
|
112 |
+
for i,t in enumerate(tqdm.tqdm(noise_scheduler.value.timesteps)):
|
113 |
latent_model_input = torch.cat([latents] * 2)
|
114 |
+
latent_model_input = noise_scheduler.value.scale_model_input(latent_model_input, timestep=t)
|
115 |
+
with network.value:
|
116 |
+
noise_pred = unet.value(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
117 |
#guidance
|
118 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
119 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
120 |
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
121 |
|
122 |
latents = 1 / 0.18215 * latents
|
123 |
+
image = vae.value.decode(latents).sample
|
124 |
image = (image / 2 + 0.5).clamp(0, 1)
|
125 |
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
126 |
|
|
|
132 |
@torch.no_grad()
|
133 |
@spaces.GPU
|
134 |
def edit_inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed, start_noise, a1, a2, a3, a4):
|
135 |
+
|
136 |
+
original_weights = network.value.proj.clone()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
#pad to same number of PCs
|
139 |
pcs_original = original_weights.shape[1]
|
140 |
+
pcs_edits = young.value.shape[1]
|
141 |
padding = torch.zeros((1,pcs_original-pcs_edits)).to(device)
|
142 |
+
young_pad = torch.cat((young.value, padding), 1)
|
143 |
+
pointy_pad = torch.cat((pointy.value, padding), 1)
|
144 |
+
wavy_pad = torch.cat((wavy.value, padding), 1)
|
145 |
+
thick_pad = torch.cat((thick.value, padding), 1)
|
146 |
|
147 |
|
148 |
edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*2e6*thick_pad
|
149 |
|
150 |
+
generator = torch.Generator(device=device.value).manual_seed(seed)
|
151 |
latents = torch.randn(
|
152 |
(1, unet.in_channels, 512 // 8, 512 // 8),
|
153 |
generator = generator,
|
154 |
+
device = device.value
|
155 |
).bfloat16()
|
156 |
|
157 |
|
158 |
+
text_input = tokenizer.value(prompt, padding="max_length", max_length=tokenizer.value.model_max_length, truncation=True, return_tensors="pt")
|
159 |
|
160 |
+
text_embeddings = text_encoder.value(text_input.input_ids.to(device))[0]
|
161 |
|
162 |
max_length = text_input.input_ids.shape[-1]
|
163 |
+
uncond_input = tokenizer.value(
|
164 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
165 |
)
|
166 |
+
uncond_embeddings = text_encoder.value(uncond_input.input_ids.to(device))[0]
|
167 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
168 |
+
noise_scheduler.value.set_timesteps(ddim_steps)
|
169 |
+
latents = latents * noise_scheduler.value.init_noise_sigma
|
170 |
|
171 |
|
172 |
|
173 |
+
for i,t in enumerate(tqdm.tqdm(noise_scheduler.value.timesteps)):
|
174 |
latent_model_input = torch.cat([latents] * 2)
|
175 |
+
latent_model_input = noise_scheduler.value.scale_model_input(latent_model_input, timestep=t)
|
176 |
|
177 |
if t>start_noise:
|
178 |
pass
|
179 |
elif t<=start_noise:
|
180 |
+
network.value.proj = torch.nn.Parameter(edited_weights)
|
181 |
+
network.value.reset()
|
182 |
|
183 |
|
184 |
with network:
|
185 |
+
noise_pred = unet.value(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
186 |
|
187 |
|
188 |
#guidance
|
189 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
190 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
191 |
+
latents = noise_scheduler.value.step(noise_pred, t, latents).prev_sample
|
192 |
|
193 |
latents = 1 / 0.18215 * latents
|
194 |
+
image = vae.value.decode(latents).sample
|
195 |
image = (image / 2 + 0.5).clamp(0, 1)
|
196 |
|
197 |
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
|
|
199 |
image = Image.fromarray((image * 255).round().astype("uint8"))
|
200 |
|
201 |
#reset weights back to original
|
202 |
+
network.value.proj = torch.nn.Parameter(original_weights)
|
203 |
+
network.value.reset()
|
204 |
|
205 |
return image
|
206 |
|
|
|
213 |
cfg = 3.0
|
214 |
steps = 25
|
215 |
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
216 |
+
torch.save(network.value.proj, "model.pt" )
|
217 |
return image, "model.pt"
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
class CustomImageDataset(Dataset):
|
221 |
def __init__(self, images, transform=None):
|