amildravid4292 commited on
Commit
cb1cf1b
·
verified ·
1 Parent(s): 116818c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -37
app.py CHANGED
@@ -32,6 +32,44 @@ from diffusers import (
32
  StableDiffusionPipeline
33
  )
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
 
37
  device = gr.State()
@@ -101,43 +139,6 @@ thick.value = debias(thick.value, "Heavy_Makeup", df, pinverse, device.value)
101
 
102
 
103
 
104
- @torch.no_grad()
105
- @spaces.GPU
106
- def load_models():
107
- pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
108
-
109
- revision = None
110
- rank = 1
111
- weight_dtype = torch.bfloat16
112
-
113
- # Load scheduler, tokenizer and models.
114
- pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
115
- torch_dtype=torch.float16,safety_checker = None,
116
- requires_safety_checker = False).to(device.value)
117
- noise_scheduler = pipe.scheduler
118
- del pipe
119
- tokenizer = AutoTokenizer.from_pretrained(
120
- pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
121
- )
122
- text_encoder = CLIPTextModel.from_pretrained(
123
- pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
124
- )
125
- vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
126
- unet = UNet2DConditionModel.from_pretrained(
127
- pretrained_model_name_or_path, subfolder="unet", revision=revision
128
- )
129
-
130
- unet.requires_grad_(False)
131
- unet.to(device, dtype=weight_dtype)
132
- vae.requires_grad_(False)
133
-
134
- text_encoder.requires_grad_(False)
135
- vae.requires_grad_(False)
136
- vae.to(device.value, dtype=weight_dtype)
137
- text_encoder.to(device.value, dtype=weight_dtype)
138
- print("")
139
-
140
- return unet, vae, text_encoder, tokenizer, noise_scheduler
141
 
142
 
143
  @torch.no_grad()
 
32
  StableDiffusionPipeline
33
  )
34
 
35
+ @torch.no_grad()
36
+ @spaces.GPU
37
+ def load_models():
38
+ pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
39
+
40
+ revision = None
41
+ rank = 1
42
+ weight_dtype = torch.bfloat16
43
+
44
+ # Load scheduler, tokenizer and models.
45
+ pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
46
+ torch_dtype=torch.float16,safety_checker = None,
47
+ requires_safety_checker = False).to(device.value)
48
+ noise_scheduler = pipe.scheduler
49
+ del pipe
50
+ tokenizer = AutoTokenizer.from_pretrained(
51
+ pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
52
+ )
53
+ text_encoder = CLIPTextModel.from_pretrained(
54
+ pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
55
+ )
56
+ vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
57
+ unet = UNet2DConditionModel.from_pretrained(
58
+ pretrained_model_name_or_path, subfolder="unet", revision=revision
59
+ )
60
+
61
+ unet.requires_grad_(False)
62
+ unet.to(device, dtype=weight_dtype)
63
+ vae.requires_grad_(False)
64
+
65
+ text_encoder.requires_grad_(False)
66
+ vae.requires_grad_(False)
67
+ vae.to(device.value, dtype=weight_dtype)
68
+ text_encoder.to(device.value, dtype=weight_dtype)
69
+ print("")
70
+
71
+ return unet, vae, text_encoder, tokenizer, noise_scheduler
72
+
73
 
74
 
75
  device = gr.State()
 
139
 
140
 
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
 
144
  @torch.no_grad()