amildravid4292 commited on
Commit
fb01019
·
verified ·
1 Parent(s): 6b24bcd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -35
app.py CHANGED
@@ -35,57 +35,48 @@ from diffusers import (
35
 
36
  device = gr.State("cuda")
37
 
38
-
39
-
40
- @torch.no_grad()
41
- @spaces.GPU
42
- def load_models():
43
- pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
44
-
45
- revision = None
46
- rank = 1
47
- weight_dtype = torch.bfloat16
48
-
49
- # Load scheduler, tokenizer and models.
50
- pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
51
  torch_dtype=torch.float16,safety_checker = None,
52
  requires_safety_checker = False).to(device.value)
53
- noise_scheduler = pipe.scheduler
54
- del pipe
55
- tokenizer = AutoTokenizer.from_pretrained(
56
  pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
57
  )
58
- text_encoder = CLIPTextModel.from_pretrained(
59
  pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
60
  )
61
- vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
62
- unet = UNet2DConditionModel.from_pretrained(
63
  pretrained_model_name_or_path, subfolder="unet", revision=revision
64
  )
65
 
66
- unet.requires_grad_(False)
67
- unet.to(device.value, dtype=weight_dtype)
68
- vae.requires_grad_(False)
69
 
70
- text_encoder.requires_grad_(False)
71
- vae.requires_grad_(False)
72
- vae.to(device.value, dtype=weight_dtype)
73
- text_encoder.to(device.value, dtype=weight_dtype)
74
- print("")
75
 
76
- return unet, vae, text_encoder, tokenizer, noise_scheduler
77
 
78
 
 
 
 
 
 
79
 
80
 
81
- generator = gr.State()
82
- unet = gr.State()
83
- vae = gr.State()
84
- text_encoder = gr.State()
85
- tokenizer = gr.State()
86
- noise_scheduler = gr.State()
87
  network = gr.State()
88
- device = gr.State("cuda")
89
 
90
 
91
  models_path = snapshot_download(repo_id="Snapchat/w2w")
 
35
 
36
  device = gr.State("cuda")
37
 
38
+ pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
39
+ revision = None
40
+ rank = 1
41
+ weight_dtype = torch.bfloat16
42
+ # Load scheduler, tokenizer and models.
43
+ pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
 
 
 
 
 
 
 
44
  torch_dtype=torch.float16,safety_checker = None,
45
  requires_safety_checker = False).to(device.value)
46
+ noise_scheduler = pipe.scheduler
47
+ del pipe
48
+ tokenizer = AutoTokenizer.from_pretrained(
49
  pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
50
  )
51
+ text_encoder = CLIPTextModel.from_pretrained(
52
  pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
53
  )
54
+ vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
55
+ unet = UNet2DConditionModel.from_pretrained(
56
  pretrained_model_name_or_path, subfolder="unet", revision=revision
57
  )
58
 
59
+ unet.requires_grad_(False)
60
+ unet.to(device.value, dtype=weight_dtype)
61
+ vae.requires_grad_(False)
62
 
63
+ text_encoder.requires_grad_(False)
64
+ vae.requires_grad_(False)
65
+ vae.to(device.value, dtype=weight_dtype)
66
+ text_encoder.to(device.value, dtype=weight_dtype)
67
+ print("")
68
 
 
69
 
70
 
71
+ unet = gr.State(unet)
72
+ vae = gr.State(vae)
73
+ text_encoder = gr.State(text_encoder)
74
+ tokenizer = gr.State(tokenizer)
75
+ noise_scheduler = gr.State(noise_scheduler)
76
 
77
 
 
 
 
 
 
 
78
  network = gr.State()
79
+
80
 
81
 
82
  models_path = snapshot_download(repo_id="Snapchat/w2w")