File size: 27,868 Bytes
0c3992e
 
 
 
 
 
 
 
25e32a2
0c3992e
 
 
 
 
 
 
 
 
 
9ed94f9
bfaa442
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a00d62c
d123e86
0c3992e
25e32a2
0c3992e
 
 
 
 
d123e86
25e32a2
 
0c3992e
 
 
 
25e32a2
0c3992e
c77efb7
 
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a00d62c
0c3992e
 
 
 
5869430
0c3992e
 
 
 
 
 
 
 
 
 
d123e86
 
0c3992e
 
 
 
c77efb7
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d123e86
 
25e32a2
 
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d123e86
 
 
 
0c3992e
 
d123e86
 
 
0c3992e
 
d123e86
0c3992e
 
d123e86
 
 
 
 
 
 
 
0c3992e
d123e86
 
 
 
 
0c3992e
d123e86
 
0c3992e
d123e86
 
 
 
 
 
 
 
 
 
 
 
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d123e86
25e32a2
d123e86
25e32a2
d123e86
 
 
 
 
 
 
 
 
 
0c3992e
 
 
 
 
25e32a2
0c3992e
 
 
 
 
 
25e32a2
 
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25e32a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3992e
 
 
 
 
 
 
 
 
d123e86
 
 
 
 
 
 
 
0c3992e
 
25e32a2
a00d62c
 
0c3992e
 
 
 
 
 
 
 
25e32a2
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d123e86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import os
import os.path as osp
import gzip
import pickle
import json
import torch
import pandas as pd
import numpy as np
from collections import Counter
from tqdm import tqdm
from huggingface_hub import hf_hub_download
import zipfile
from ogb.utils.url import download_url
from src.benchmarks.semistruct.knowledge_base import SemiStructureKB
from src.tools.process_text import clean_data, compact_text
from src.tools.node import df_row_to_dict, Node, register_node
from src.tools.io import save_files, load_files

PROCESSED_DATASET = {
    "repo": "snap-stanford/stark",
    "file": "skb/amazon/processed.zip",
}

class AmazonSemiStruct(SemiStructureKB):
    
    REVIEW_CATEGORIES = set(['Amazon_Fashion','All_Beauty','Appliances',
                             'Arts_Crafts_and_Sewing','Automotive','Books',
                             'CDs_and_Vinyl','Cell_Phones_and_Accessories',
                             'Clothing_Shoes_and_Jewelry','Digital_Music',
                             'Electronics','Gift_Cards','Grocery_and_Gourmet_Food',
                             'Home_and_Kitchen','Industrial_and_Scientific', 'Kindle_Store',
                             'Luxury_Beauty','Magazine_Subscriptions', 'Movies_and_TV',
                             'Musical_Instruments', 'Office_Products','Patio_Lawn_and_Garden',
                             'Pet_Supplies','Prime_Pantry','Software','Sports_and_Outdoors',
                             'Tools_and_Home_Improvement','Toys_and_Games','Video_Games'])
    
    # single answers
    QA_CATEGORIES = set(['Appliances','Arts_Crafts_and_Sewing', 'Automotive',
                         'Baby','Beauty','Cell_Phones_and_Accessories',
                         'Clothing_Shoes_and_Jewelry','Electronics',
                        'Grocery_and_Gourmet_Food','Health_and_Personal_Care',
                        'Home_and_Kitchen','Musical_Instruments','Office_Products',
                        'Patio_Lawn_and_Garden','Pet_Supplies','Sports_and_Outdoors',
                        'Tools_and_Home_Improvement','Toys_and_Games','Video_Games'])
    
    COMMON = set(['Appliances', 'Arts_Crafts_and_Sewing', 'Automotive', 
                  'Cell_Phones_and_Accessories', 'Clothing_Shoes_and_Jewelry', 'Electronics', 
                  'Grocery_and_Gourmet_Food', 'Home_and_Kitchen', 'Musical_Instruments', 
                  'Office_Products', 'Patio_Lawn_and_Garden', 'Pet_Supplies', 'Sports_and_Outdoors', 
                  'Tools_and_Home_Improvement', 'Toys_and_Games', 'Video_Games'])
    
    sub_category = 'data/amazon/category_list.json'
    SUB_CATEGORIES = set(json.load(open(sub_category, 'r')))
    link_columns = ['also_buy', 'also_view']
    review_columns = ['reviewerID', 'summary', 'style', 'reviewText', 'vote', 'overall', 'verified', 'reviewTime']
    qa_columns = ['questionType', 'answerType', 'question', 'answer', 'answerTime']
    meta_columns = ['asin', 'title', 'global_category', 'category', 'price', 'brand', 'feature',
                    'rank', 'details', 'description']
    candidate_types = ['product']
    node_attr_dict = {'product': ['title', 'dimensions', 'weight', 'description', 'features', 'reviews', 'Q&A'],
                       'brand': ['brand_name'],
                       'category': ['category_name'],
                       'color': ['color_name']}

    def __init__(self, 
                 root,
                 categories: list, 
                 meta_link_types=['brand', 'category', 'color'],
                 max_entries=25,
                 download_processed=True,
                 **kwargs):
        '''
            Args: 
                root (str): root directory to store the data
                categories (list): product categories
                meta_link_types (list): a list which may contain entries in node info 
                                        that used to consruct meta links, e.g. ['category', 'brand'] 
                                        will construct entity nodes of catrgory and brand which link 
                                        to corresponding nodes
                max_entries (int): maximum number of review & qa entries to show in the description
                indirected (bool): make the graph indirected
        '''

        self.root = root
        self.max_entries = max_entries 
        self.raw_data_dir = osp.join(root, 'raw')
        self.processed_data_dir = osp.join(root, 'processed')
        os.makedirs(self.raw_data_dir, exist_ok=True)
        os.makedirs(self.processed_data_dir, exist_ok=True)

        # construct the graph based on link info in the raw data
        cache_path = None if meta_link_types is None else \
                     osp.join(self.processed_data_dir, 'cache', '-'.join(meta_link_types))
        
        if not osp.exists(osp.join(cache_path, 'node_info.pkl')) and download_processed:
            print('Downloading processed data...')
            processed_path = hf_hub_download(
                PROCESSED_DATASET["repo"],
                PROCESSED_DATASET["file"],
                repo_type="dataset"
            )
            with zipfile.ZipFile(processed_path, 'r') as zip_ref:
                zip_ref.extractall(self.root)
            os.remove(processed_path)
            print('Downloaded processed data!')

        if not (cache_path is None) and osp.exists(cache_path):
            print(f'Load cached graph with meta link types {meta_link_types}')
            processed_data = load_files(cache_path)
        else:
            print(f'Start processing raw data...')
            print(f'{meta_link_types=}')
            processed_data = self._process_raw(categories)
            if meta_link_types: 
                # customize the graph by adding meta links
                processed_data = self.post_process(processed_data, meta_link_types=meta_link_types, cache_path=cache_path)
        super(AmazonSemiStruct, self).__init__(**processed_data, **kwargs)
    
    def __getitem__(self, idx):
        idx = int(idx)
        node_info = self.node_info[idx]
        node = Node()
        register_node(node, node_info)
        return node
        
    def get_chunk_info(self, idx, attribute):
        if not hasattr(self[idx], attribute): return ''
        node_attr = getattr(self[idx], attribute)
        
        if 'feature' in attribute:
            features = []
            if len(node_attr):
                for feature_idx, feature in enumerate(node_attr):
                    if feature == '': continue
                    if 'asin' in feature.lower(): continue
                    features.append(feature)
            chunk = ' '.join(features)
        
        elif 'review' in attribute:
            chunk = ''
            if len(node_attr):
                scores = [0 if pd.isnull(review['vote']) else int(review['vote'].replace(",","")) for review in node_attr]
                ranks = np.argsort(-np.array(scores))
                for idx, review_idx in enumerate(ranks):
                    review = node_attr[review_idx]
                    chunk += 'The review \"' + str(review['summary']) + '\"'
                    chunk += 'states that \"' + str(review['reviewText']) + '\". '
                    if idx > self.max_entries: break
        
        elif 'qa' in attribute:
            chunk = ''
            if len(node_attr):
                for idx, question in enumerate(node_attr):
                    chunk += 'The question is \"' + str(question['question']) + '\", '
                    chunk += 'and the answer is \"' + str(question['answer']) + '\". '
                    if idx > self.max_entries: 
                        break
        
        elif 'description' in attribute and len(node_attr):
            chunk = " ".join(node_attr)
    
        else:
            chunk = node_attr
        return chunk 
    
    def get_doc_info(self, idx, 
                     add_rel=True, 
                     compact=False):
        
        if self.node_type_dict[int(self.node_types[idx])] == 'brand':
            return f'brand name: {self[idx].brand_name}'
        if self.node_type_dict[int(self.node_types[idx])] == 'category':
            return f'category name: {self[idx].category_name}'
        if self.node_type_dict[int(self.node_types[idx])] == 'color':
            return f'color name: {self[idx].color_name}'
        
        node = self[idx]
        doc = f'- product: {node.title}\n'
        if hasattr(node, 'brand'):
            doc += f'- brand: {node.brand}\n'
        try:
            dimensions, weight = node.details.dictionary.product_dimensions.split(' ; ')
            doc += (f'- dimensions: {dimensions}\n'
                    f'- weight: {weight}\n')
        except: pass
        if len(node.description):
            description = " ".join(node.description).strip(" ")
            if len(description) > 0:
                doc += f'- description: {description}\n'
        
        feature_text = f'- features: \n'
        if len(node.feature):
            for feature_idx, feature in enumerate(node.feature):
                if feature == '': continue
                if 'asin' in feature.lower(): continue
                feature_text += (f'#{feature_idx + 1}: {feature}\n')
        else: feature_text = ''
        
        if len(node.review):
            review_text = f'- reviews: \n'
            scores = [0 if pd.isnull(review['vote']) else int(review['vote'].replace(",","")) for review in node.review]
            ranks = np.argsort(-np.array(scores))
            for i, review_idx in enumerate(ranks):
                review = node.review[review_idx]
                review_text += (f'#{review_idx + 1}:\n'
                                f'summary: {review["summary"]}\n'
                                f'text: "{review["reviewText"]}"\n')
                if i > self.max_entries: break
        else: review_text = ''
        
        if len(node.qa):
            qa_text = f'- Q&A: \n'
            for qa_idx, qa in enumerate(node.qa):
                qa_text += (f'#{qa_idx + 1}:\n'
                            f'question: "{qa["question"]}"\n'
                            f'answer: "{qa["answer"]}"\n')
                if qa_idx > self.max_entries: break
        else: qa_text = ''
        
        doc += feature_text + review_text + qa_text
        
        if add_rel:
            doc += self.get_rel_info(idx)
        if compact: 
            doc = compact_text(doc)
        return doc
    
    def get_rel_info(self, idx, rel_types=None, n_rel=-1):
        doc = ''
        rel_types = self.rel_type_lst() if rel_types is None else rel_types
        n_also_buy = self.get_neighbor_nodes(idx, 'also_buy')
        n_also_view = self.get_neighbor_nodes(idx, 'also_view')
        n_has_brand = self.get_neighbor_nodes(idx, 'has_brand')

        str_also_buy = [f"#{idx + 1}: " + self[i].title + '\n' for idx, i in enumerate(n_also_buy)]
        str_also_view = [f"#{idx + 1}: " + self[i].title  + '\n' for idx, i in enumerate(n_also_view)]
        
        if len(str_also_buy) == 0: str_also_buy = ''
        if len(str_also_view) == 0: str_also_view = ''
        str_has_brand = ''
        if len(n_has_brand): 
            str_has_brand = f'  brand: {self[n_has_brand[0]].brand_name}\n'
            
        str_also_buy = ''.join(str_also_buy)
        str_also_view = ''.join(str_also_view)

        if len(str_also_buy):
            doc += f'  products also purchased: \n{str_also_buy}'
        if len(str_also_view):
            doc += f'  products also viewed: \n{str_also_view}'
        if len(n_has_brand):
            doc += str_has_brand
            
        if len(doc): 
            doc = '- relations:\n' + doc
        return doc
    
    def _process_raw(self, categories):
        if 'all' in categories:
            review_categories = self.REVIEW_CATEGORIES
            qa_categories = self.QA_CATEGORIES
        else:
            qa_categories = review_categories = categories
            assert len(set(categories) - self.COMMON) == 0, f'invalid categories exist'
        
        if osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
            print(f'Load processed data from {self.processed_data_dir}')
            loaded_files = load_files(self.processed_data_dir)
            loaded_files.update(
                {'node_types': torch.zeros(len(loaded_files['node_info'])),
                 'node_type_dict': {0: 'product'}})
            return loaded_files
        
        print(f'Check data downloading...')
        for category in review_categories:
            review_header = 'https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_v2'
            if not os.path.exists(osp.join(self.raw_data_dir, f'{category}.json.gz')):
                print(f'Downloading {category} data...')
                download_url(f'{review_header}/categoryFiles/{category}.json.gz', self.raw_data_dir)
                download_url(f'{review_header}/metaFiles2/meta_{category}.json.gz', self.raw_data_dir)
        for category in qa_categories:
            qa_header = 'https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon/qa'
            if not os.path.exists(osp.join(self.raw_data_dir, f'qa_{category}.json.gz')):
                print(f'Downloading {category} QA data...')
                download_url(f'{qa_header}/qa_{category}.json.gz', self.raw_data_dir)
            
        if not osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
            ckt_path = 'data/amazon/intermediate'
            print('Loading data... It might take a while')
            # read amazon QA data
            df_qa_path = os.path.join(ckt_path, 'df_qa.pkl')
            if os.path.exists(df_qa_path):
                df_qa = pd.read_pickle(df_qa_path)
            else:
                df_qa = pd.concat([read_qa(osp.join(self.raw_data_dir, f'qa_{category}.json.gz'))
                                for category in qa_categories])[['asin'] + self.qa_columns]
                df_qa.to_pickle(df_qa_path)
            print('df_qa loaded')
            # read amazon review data
            df_review_path = os.path.join(ckt_path, 'df_review.pkl')
            if os.path.exists(df_review_path):
                df_review = pd.read_pickle(df_review_path)
            else:
                df_review = pd.concat([read_review(osp.join(self.raw_data_dir, f'{category}.json.gz')) 
                                   for category in review_categories])[['asin'] + self.review_columns]
                df_review.to_pickle(df_review_path)
            print('df_review loaded')
            # read amazon meta data from amazon review & amazon kdd
            df_ucsd_meta_path = os.path.join(ckt_path, 'df_ucsd_meta.pkl')
            if os.path.exists(df_ucsd_meta_path):
                df_ucsd_meta = pd.read_pickle(df_ucsd_meta_path)
            else:
                meta_df_lst = []
                for category in review_categories:
                    cat_review = read_review(osp.join(self.raw_data_dir, f'meta_{category}.json.gz'))
                    cat_review.insert(0, 'global_category', category.replace('_', ' '))
                    meta_df_lst.append(cat_review)
                df_ucsd_meta = pd.concat(meta_df_lst)
                df_ucsd_meta.to_pickle(df_ucsd_meta_path)
            print('df_ucsd_meta loaded')
            print('Preprocessing data...')
            df_ucsd_meta = df_ucsd_meta.drop_duplicates(subset='asin', keep='first')
            df_meta = df_ucsd_meta[self.meta_columns + self.link_columns]
            
            # Merge dataframes
            df_review_meta = df_review.merge(df_meta, left_on='asin', right_on='asin')
            unique_asin = np.unique(np.array(df_review_meta['asin']))
            
            # Filer items with both meta and review data
            df_qa_reduced = df_qa[df_qa['asin'].isin(unique_asin)]
            df_review_reduced = df_review[df_review['asin'].isin(unique_asin)]
            df_meta_reduced = df_meta[df_meta['asin'].isin(unique_asin)].reset_index()
            
            def get_map(df):
                asin2id, id2asin = {}, {}
                for idx in range(len(df)):
                    asin2id[df['asin'][idx]] = idx
                    id2asin[idx] = df['asin'][idx]
                return asin2id, id2asin

            print('Construct node info and graph...')
            # get mapping from asin to node id and its reversed mapping
            self.asin2id, self.id2asin = get_map(df_meta_reduced)
            node_info = self.construct_raw_node_info(df_meta_reduced, df_review_reduced, df_qa_reduced)
            edge_index, edge_types = self.create_raw_product_graph(df_meta_reduced, 
                                                                   columns=self.link_columns)
            edge_type_dict = {0: 'also_buy', 1: 'also_view'}
            processed_data = {
                'node_info': node_info, 
                'edge_index': edge_index, 
                'edge_types': edge_types,
                'edge_type_dict': edge_type_dict}
            
            print(f'Saving to {self.processed_data_dir}...')
            save_files(save_path=self.processed_data_dir, **processed_data)

        processed_data.update({'node_types': torch.zeros(len(processed_data['node_info'])),
                               'node_type_dict': {0: 'product'}})
        return processed_data
    
    def post_process(self, raw_info, meta_link_types, cache_path=None):
        print(f'Adding meta link types {meta_link_types}')
        node_info = raw_info['node_info']
        edge_type_dict = raw_info['edge_type_dict']
        node_type_dict = raw_info['node_type_dict']
        node_types = raw_info['node_types'].tolist()
        edge_index = raw_info['edge_index'].tolist()
        edge_types = raw_info['edge_types'].tolist()
        
        n_e_types, n_n_types = len(edge_type_dict), len(node_type_dict)
        for i, link_type in enumerate(meta_link_types):
            if link_type == 'brand':
                values = np.array([node_info_i[link_type] for node_info_i in node_info.values() if link_type in node_info_i.keys()])
                indices = np.array([idx for idx, node_info_i in enumerate(node_info.values()) if link_type in node_info_i.keys()])
            elif link_type in ['category', 'color']:
                value_list = []
                indice_list = []
                for idx, node_info_i in enumerate(node_info.values()):
                    if link_type in node_info_i.keys():
                        value_list.extend(node_info_i[link_type])
                        indice_list.extend([idx for _ in range(len(node_info_i[link_type]))])
                values = np.array(value_list)
                indices = np.array(indice_list)
            else:
                raise Exception(f'Invalid meta link type {link_type}')
            
            cur_n_nodes = len(node_info)
            node_type_dict[n_n_types + i] = link_type
            edge_type_dict[n_e_types + i] = "has_" + link_type
            unique = np.unique(values)
            for j, unique_j in tqdm(enumerate(unique)):
                node_info[cur_n_nodes + j] = {link_type + '_name': unique_j}
                ids = indices[np.array(values == unique_j)]
                edge_index[0].extend(list(ids))
                edge_index[1].extend([cur_n_nodes + j for _ in range(len(ids))])
                edge_types.extend([i + n_e_types for _ in range(len(ids))])
            node_types.extend([n_n_types + i for _ in range(len(unique))])
            print(f'finished adding {link_type}')
            
        edge_index = torch.LongTensor(edge_index)
        edge_types = torch.LongTensor(edge_types)
        node_types = torch.LongTensor(node_types)
        files = {'node_info': node_info, 
                 'edge_index': edge_index, 
                 'edge_types': edge_types, 
                 'edge_type_dict': edge_type_dict,
                 'node_type_dict': node_type_dict,
                 'node_types': node_types
                 }
        if cache_path is not None:
            save_files(cache_path, **files)
        return files
    
    def _process_brand(self, brand):
        brand = brand.strip(" \".*+,-_!@#$%^&*();\/|<>\'\t\n\r\\")
        if len(brand) > 3 and brand[:3] == 'by ':
            brand = brand[3:]
        if len(brand) > 4 and brand[-4:] == '.com':
            brand = brand[:-4]
        if len(brand) > 4 and brand[:4] == 'www.':
            brand = brand[4:]
        if len(brand) > 100: 
            brand = brand.split(' ')[0]
        return brand
    
    def construct_raw_node_info(self, df_meta, df_review, df_qa):
        node_info = {}
        for idx, asin in self.id2asin.items():
            node_info[idx] = {}
            node_info[idx]['review'] = []
            node_info[idx]['qa'] = []
        
        ###################### Assign color ########################
        def assign_colors(df_review, lower_limit=20):
            # asign to color
            df_review = df_review[['asin', 'style']]
            df_review = df_review.dropna(subset=['style'])
            raw_color_dict = {}
            for idx, row in tqdm(df_review.iterrows()):
                asin, style = row['asin'], row['style']
                for key in style.keys():
                    if 'color' in key.lower():
                        try:
                            raw_color_dict[asin] 
                        except:
                            raw_color_dict[asin] = []
                        raw_color_dict[asin].append(
                            style[key].strip().lower() if isinstance(style[key], str) else style[key][0].strip())
            
            all_color_values = []
            for asin in raw_color_dict.keys():
                raw_color_dict[asin] = list(set(raw_color_dict[asin]))
                all_color_values.extend(raw_color_dict[asin])
            
            print('number of all colors', len(all_color_values))
            color_counter = Counter(all_color_values)
            print('number of unique colors', len(color_counter))
            color_counter = {k: v for k, v in sorted(color_counter.items(), key=lambda item: item[1], reverse=True)}
            selected_colors = []
            for color, number in color_counter.items():
                if number > lower_limit and len(color) > 2 and len(color.split(' ')) < 5 and color.isnumeric() is False:
                    selected_colors.append(color)
            print('number of selected colors', len(selected_colors))
            
            filtered_color_dict = {}
            total_color_connections = 0
            for asin in raw_color_dict.keys():
                filtered_color_dict[asin] = []
                for value in raw_color_dict[asin]:
                    if value in selected_colors:
                        filtered_color_dict[asin].append(value)
                total_color_connections += len(filtered_color_dict[asin])
            print('number of linked products', len(filtered_color_dict))
            print('number of total connections', total_color_connections)
            return filtered_color_dict
    
        filtered_color_dict_path = os.path.join('data/amazon/intermediate', 
                                                'filtered_color_dict.pkl')
        if os.path.exists(filtered_color_dict_path):
            with open(filtered_color_dict_path, 'rb') as f:
                filtered_color_dict = pickle.load(f)
        else:
            filtered_color_dict = assign_colors(df_review)
            with open(filtered_color_dict_path, 'wb') as f:
                pickle.dump(filtered_color_dict, f)
        
        for i in tqdm(range(len(df_meta))):
            df_meta_i = df_meta.iloc[i]
            asin = df_meta_i['asin']
            idx = self.asin2id[asin]
            try:
                color = filtered_color_dict[asin]
                if len(color):
                    node_info[idx]['color'] = color
            except: pass
        print('loaded color')
        ####################################################################

        for i in tqdm(range(len(df_meta))):
            df_meta_i = df_meta.iloc[i]
            asin = df_meta_i['asin']
            idx = self.asin2id[asin]
            for column in self.meta_columns:
                if column == 'brand':
                    brand = self._process_brand(clean_data(df_meta_i[column]))
                    if len(brand) > 1:
                        node_info[idx]['brand'] = brand
                elif column == 'category':
                    category_list = []
                    for category in df_meta_i[column]:
                        category = category.lower()
                        if category in self.SUB_CATEGORIES:
                            category_list.append(category)
                    if len(category_list) > 0:
                        node_info[idx]['category'] = category_list
                else:
                    node_info[idx][column] = clean_data(df_meta_i[column])
        
        review_columns = self.review_columns
        review_columns.remove('style')
        for name, df in zip(['review', 'qa'], [df_review, df_qa]):
            for i in tqdm(range(len(df))):
                df_i = df.iloc[i]
                asin = df_i['asin']
                idx = self.asin2id[asin]
                node_info[idx][name].append(
                    df_row_to_dict(df_i, colunm_names=self.review_columns \
                                   if name == 'review' else self.qa_columns))
        import pdb; pdb.set_trace()
        return node_info

    def create_raw_product_graph(self, df, columns):
        edge_types = []
        edge_index = [[], []]
        for idx in range(len(df)):
            out_node = self.asin2id[df['asin'].iloc[idx]]
            for edge_type_id, edge_type in enumerate(columns):
                in_nodes = []
                if not isinstance(df[edge_type].iloc[idx], list):
                    continue
                for i in df[edge_type].iloc[idx]:
                    try:
                        in_nodes.append(self.asin2id[i])
                    except KeyError:
                        continue
                edge_types.extend([edge_type_id for _ in range(len(in_nodes))])
                edge_index[0].extend([out_node for _ in range(len(in_nodes))])
                edge_index[1].extend(in_nodes)
        return torch.LongTensor(edge_index), torch.LongTensor(edge_types)

    def has_brand(self, idx, brand):
        try: 
            b = self[idx].brand
            if len(b) > 4 and b[-4:] == '.com': b = b[:-4]
            if len(brand) > 4 and brand[-4:] == '.com': brand = brand[:-4]
            return b.lower().strip("\"") == brand.lower().strip("\"")
        except:
            return False

    def has_also_buy(self, idx, also_buy_item):
        try: 
            also_buy_lst = self.get_neighbor_nodes(idx, 'also_buy') 
            return also_buy_item in also_buy_lst
        except:
            return False
        
    def has_also_view(self, idx, also_view_item):
        try: 
            also_buy_lst = self.get_neighbor_nodes(idx, 'also_view') 
            return also_view_item in also_buy_lst
        except:
            return False
    
# read review files
def read_review(path):
  def parse(path):
    g = gzip.open(path, 'rb')
    for l in g:
      yield json.loads(l)
  def getDF(path):
    i = 0
    df = {}
    for d in parse(path):
      df[i] = d
      i += 1
    return pd.DataFrame.from_dict(df, orient='index')
  return getDF(path)


# read qa files
def read_qa(path):
  def parse(path):
    g = gzip.open(path, 'rb')
    for l in g:
      yield eval(l)
  def getDF(path):
    i = 0
    df = {}
    for d in parse(path):
      df[i] = d
      i += 1
    return pd.DataFrame.from_dict(df, orient='index')
  return getDF(path)