Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 27,868 Bytes
0c3992e 25e32a2 0c3992e 9ed94f9 bfaa442 0c3992e a00d62c d123e86 0c3992e 25e32a2 0c3992e d123e86 25e32a2 0c3992e 25e32a2 0c3992e c77efb7 0c3992e a00d62c 0c3992e 5869430 0c3992e d123e86 0c3992e c77efb7 0c3992e d123e86 25e32a2 0c3992e d123e86 0c3992e d123e86 0c3992e d123e86 0c3992e d123e86 0c3992e d123e86 0c3992e d123e86 0c3992e d123e86 0c3992e d123e86 25e32a2 d123e86 25e32a2 d123e86 0c3992e 25e32a2 0c3992e 25e32a2 0c3992e 25e32a2 0c3992e d123e86 0c3992e 25e32a2 a00d62c 0c3992e 25e32a2 0c3992e d123e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
import os
import os.path as osp
import gzip
import pickle
import json
import torch
import pandas as pd
import numpy as np
from collections import Counter
from tqdm import tqdm
from huggingface_hub import hf_hub_download
import zipfile
from ogb.utils.url import download_url
from src.benchmarks.semistruct.knowledge_base import SemiStructureKB
from src.tools.process_text import clean_data, compact_text
from src.tools.node import df_row_to_dict, Node, register_node
from src.tools.io import save_files, load_files
PROCESSED_DATASET = {
"repo": "snap-stanford/stark",
"file": "skb/amazon/processed.zip",
}
class AmazonSemiStruct(SemiStructureKB):
REVIEW_CATEGORIES = set(['Amazon_Fashion','All_Beauty','Appliances',
'Arts_Crafts_and_Sewing','Automotive','Books',
'CDs_and_Vinyl','Cell_Phones_and_Accessories',
'Clothing_Shoes_and_Jewelry','Digital_Music',
'Electronics','Gift_Cards','Grocery_and_Gourmet_Food',
'Home_and_Kitchen','Industrial_and_Scientific', 'Kindle_Store',
'Luxury_Beauty','Magazine_Subscriptions', 'Movies_and_TV',
'Musical_Instruments', 'Office_Products','Patio_Lawn_and_Garden',
'Pet_Supplies','Prime_Pantry','Software','Sports_and_Outdoors',
'Tools_and_Home_Improvement','Toys_and_Games','Video_Games'])
# single answers
QA_CATEGORIES = set(['Appliances','Arts_Crafts_and_Sewing', 'Automotive',
'Baby','Beauty','Cell_Phones_and_Accessories',
'Clothing_Shoes_and_Jewelry','Electronics',
'Grocery_and_Gourmet_Food','Health_and_Personal_Care',
'Home_and_Kitchen','Musical_Instruments','Office_Products',
'Patio_Lawn_and_Garden','Pet_Supplies','Sports_and_Outdoors',
'Tools_and_Home_Improvement','Toys_and_Games','Video_Games'])
COMMON = set(['Appliances', 'Arts_Crafts_and_Sewing', 'Automotive',
'Cell_Phones_and_Accessories', 'Clothing_Shoes_and_Jewelry', 'Electronics',
'Grocery_and_Gourmet_Food', 'Home_and_Kitchen', 'Musical_Instruments',
'Office_Products', 'Patio_Lawn_and_Garden', 'Pet_Supplies', 'Sports_and_Outdoors',
'Tools_and_Home_Improvement', 'Toys_and_Games', 'Video_Games'])
sub_category = 'data/amazon/category_list.json'
SUB_CATEGORIES = set(json.load(open(sub_category, 'r')))
link_columns = ['also_buy', 'also_view']
review_columns = ['reviewerID', 'summary', 'style', 'reviewText', 'vote', 'overall', 'verified', 'reviewTime']
qa_columns = ['questionType', 'answerType', 'question', 'answer', 'answerTime']
meta_columns = ['asin', 'title', 'global_category', 'category', 'price', 'brand', 'feature',
'rank', 'details', 'description']
candidate_types = ['product']
node_attr_dict = {'product': ['title', 'dimensions', 'weight', 'description', 'features', 'reviews', 'Q&A'],
'brand': ['brand_name'],
'category': ['category_name'],
'color': ['color_name']}
def __init__(self,
root,
categories: list,
meta_link_types=['brand', 'category', 'color'],
max_entries=25,
download_processed=True,
**kwargs):
'''
Args:
root (str): root directory to store the data
categories (list): product categories
meta_link_types (list): a list which may contain entries in node info
that used to consruct meta links, e.g. ['category', 'brand']
will construct entity nodes of catrgory and brand which link
to corresponding nodes
max_entries (int): maximum number of review & qa entries to show in the description
indirected (bool): make the graph indirected
'''
self.root = root
self.max_entries = max_entries
self.raw_data_dir = osp.join(root, 'raw')
self.processed_data_dir = osp.join(root, 'processed')
os.makedirs(self.raw_data_dir, exist_ok=True)
os.makedirs(self.processed_data_dir, exist_ok=True)
# construct the graph based on link info in the raw data
cache_path = None if meta_link_types is None else \
osp.join(self.processed_data_dir, 'cache', '-'.join(meta_link_types))
if not osp.exists(osp.join(cache_path, 'node_info.pkl')) and download_processed:
print('Downloading processed data...')
processed_path = hf_hub_download(
PROCESSED_DATASET["repo"],
PROCESSED_DATASET["file"],
repo_type="dataset"
)
with zipfile.ZipFile(processed_path, 'r') as zip_ref:
zip_ref.extractall(self.root)
os.remove(processed_path)
print('Downloaded processed data!')
if not (cache_path is None) and osp.exists(cache_path):
print(f'Load cached graph with meta link types {meta_link_types}')
processed_data = load_files(cache_path)
else:
print(f'Start processing raw data...')
print(f'{meta_link_types=}')
processed_data = self._process_raw(categories)
if meta_link_types:
# customize the graph by adding meta links
processed_data = self.post_process(processed_data, meta_link_types=meta_link_types, cache_path=cache_path)
super(AmazonSemiStruct, self).__init__(**processed_data, **kwargs)
def __getitem__(self, idx):
idx = int(idx)
node_info = self.node_info[idx]
node = Node()
register_node(node, node_info)
return node
def get_chunk_info(self, idx, attribute):
if not hasattr(self[idx], attribute): return ''
node_attr = getattr(self[idx], attribute)
if 'feature' in attribute:
features = []
if len(node_attr):
for feature_idx, feature in enumerate(node_attr):
if feature == '': continue
if 'asin' in feature.lower(): continue
features.append(feature)
chunk = ' '.join(features)
elif 'review' in attribute:
chunk = ''
if len(node_attr):
scores = [0 if pd.isnull(review['vote']) else int(review['vote'].replace(",","")) for review in node_attr]
ranks = np.argsort(-np.array(scores))
for idx, review_idx in enumerate(ranks):
review = node_attr[review_idx]
chunk += 'The review \"' + str(review['summary']) + '\"'
chunk += 'states that \"' + str(review['reviewText']) + '\". '
if idx > self.max_entries: break
elif 'qa' in attribute:
chunk = ''
if len(node_attr):
for idx, question in enumerate(node_attr):
chunk += 'The question is \"' + str(question['question']) + '\", '
chunk += 'and the answer is \"' + str(question['answer']) + '\". '
if idx > self.max_entries:
break
elif 'description' in attribute and len(node_attr):
chunk = " ".join(node_attr)
else:
chunk = node_attr
return chunk
def get_doc_info(self, idx,
add_rel=True,
compact=False):
if self.node_type_dict[int(self.node_types[idx])] == 'brand':
return f'brand name: {self[idx].brand_name}'
if self.node_type_dict[int(self.node_types[idx])] == 'category':
return f'category name: {self[idx].category_name}'
if self.node_type_dict[int(self.node_types[idx])] == 'color':
return f'color name: {self[idx].color_name}'
node = self[idx]
doc = f'- product: {node.title}\n'
if hasattr(node, 'brand'):
doc += f'- brand: {node.brand}\n'
try:
dimensions, weight = node.details.dictionary.product_dimensions.split(' ; ')
doc += (f'- dimensions: {dimensions}\n'
f'- weight: {weight}\n')
except: pass
if len(node.description):
description = " ".join(node.description).strip(" ")
if len(description) > 0:
doc += f'- description: {description}\n'
feature_text = f'- features: \n'
if len(node.feature):
for feature_idx, feature in enumerate(node.feature):
if feature == '': continue
if 'asin' in feature.lower(): continue
feature_text += (f'#{feature_idx + 1}: {feature}\n')
else: feature_text = ''
if len(node.review):
review_text = f'- reviews: \n'
scores = [0 if pd.isnull(review['vote']) else int(review['vote'].replace(",","")) for review in node.review]
ranks = np.argsort(-np.array(scores))
for i, review_idx in enumerate(ranks):
review = node.review[review_idx]
review_text += (f'#{review_idx + 1}:\n'
f'summary: {review["summary"]}\n'
f'text: "{review["reviewText"]}"\n')
if i > self.max_entries: break
else: review_text = ''
if len(node.qa):
qa_text = f'- Q&A: \n'
for qa_idx, qa in enumerate(node.qa):
qa_text += (f'#{qa_idx + 1}:\n'
f'question: "{qa["question"]}"\n'
f'answer: "{qa["answer"]}"\n')
if qa_idx > self.max_entries: break
else: qa_text = ''
doc += feature_text + review_text + qa_text
if add_rel:
doc += self.get_rel_info(idx)
if compact:
doc = compact_text(doc)
return doc
def get_rel_info(self, idx, rel_types=None, n_rel=-1):
doc = ''
rel_types = self.rel_type_lst() if rel_types is None else rel_types
n_also_buy = self.get_neighbor_nodes(idx, 'also_buy')
n_also_view = self.get_neighbor_nodes(idx, 'also_view')
n_has_brand = self.get_neighbor_nodes(idx, 'has_brand')
str_also_buy = [f"#{idx + 1}: " + self[i].title + '\n' for idx, i in enumerate(n_also_buy)]
str_also_view = [f"#{idx + 1}: " + self[i].title + '\n' for idx, i in enumerate(n_also_view)]
if len(str_also_buy) == 0: str_also_buy = ''
if len(str_also_view) == 0: str_also_view = ''
str_has_brand = ''
if len(n_has_brand):
str_has_brand = f' brand: {self[n_has_brand[0]].brand_name}\n'
str_also_buy = ''.join(str_also_buy)
str_also_view = ''.join(str_also_view)
if len(str_also_buy):
doc += f' products also purchased: \n{str_also_buy}'
if len(str_also_view):
doc += f' products also viewed: \n{str_also_view}'
if len(n_has_brand):
doc += str_has_brand
if len(doc):
doc = '- relations:\n' + doc
return doc
def _process_raw(self, categories):
if 'all' in categories:
review_categories = self.REVIEW_CATEGORIES
qa_categories = self.QA_CATEGORIES
else:
qa_categories = review_categories = categories
assert len(set(categories) - self.COMMON) == 0, f'invalid categories exist'
if osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
print(f'Load processed data from {self.processed_data_dir}')
loaded_files = load_files(self.processed_data_dir)
loaded_files.update(
{'node_types': torch.zeros(len(loaded_files['node_info'])),
'node_type_dict': {0: 'product'}})
return loaded_files
print(f'Check data downloading...')
for category in review_categories:
review_header = 'https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_v2'
if not os.path.exists(osp.join(self.raw_data_dir, f'{category}.json.gz')):
print(f'Downloading {category} data...')
download_url(f'{review_header}/categoryFiles/{category}.json.gz', self.raw_data_dir)
download_url(f'{review_header}/metaFiles2/meta_{category}.json.gz', self.raw_data_dir)
for category in qa_categories:
qa_header = 'https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon/qa'
if not os.path.exists(osp.join(self.raw_data_dir, f'qa_{category}.json.gz')):
print(f'Downloading {category} QA data...')
download_url(f'{qa_header}/qa_{category}.json.gz', self.raw_data_dir)
if not osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
ckt_path = 'data/amazon/intermediate'
print('Loading data... It might take a while')
# read amazon QA data
df_qa_path = os.path.join(ckt_path, 'df_qa.pkl')
if os.path.exists(df_qa_path):
df_qa = pd.read_pickle(df_qa_path)
else:
df_qa = pd.concat([read_qa(osp.join(self.raw_data_dir, f'qa_{category}.json.gz'))
for category in qa_categories])[['asin'] + self.qa_columns]
df_qa.to_pickle(df_qa_path)
print('df_qa loaded')
# read amazon review data
df_review_path = os.path.join(ckt_path, 'df_review.pkl')
if os.path.exists(df_review_path):
df_review = pd.read_pickle(df_review_path)
else:
df_review = pd.concat([read_review(osp.join(self.raw_data_dir, f'{category}.json.gz'))
for category in review_categories])[['asin'] + self.review_columns]
df_review.to_pickle(df_review_path)
print('df_review loaded')
# read amazon meta data from amazon review & amazon kdd
df_ucsd_meta_path = os.path.join(ckt_path, 'df_ucsd_meta.pkl')
if os.path.exists(df_ucsd_meta_path):
df_ucsd_meta = pd.read_pickle(df_ucsd_meta_path)
else:
meta_df_lst = []
for category in review_categories:
cat_review = read_review(osp.join(self.raw_data_dir, f'meta_{category}.json.gz'))
cat_review.insert(0, 'global_category', category.replace('_', ' '))
meta_df_lst.append(cat_review)
df_ucsd_meta = pd.concat(meta_df_lst)
df_ucsd_meta.to_pickle(df_ucsd_meta_path)
print('df_ucsd_meta loaded')
print('Preprocessing data...')
df_ucsd_meta = df_ucsd_meta.drop_duplicates(subset='asin', keep='first')
df_meta = df_ucsd_meta[self.meta_columns + self.link_columns]
# Merge dataframes
df_review_meta = df_review.merge(df_meta, left_on='asin', right_on='asin')
unique_asin = np.unique(np.array(df_review_meta['asin']))
# Filer items with both meta and review data
df_qa_reduced = df_qa[df_qa['asin'].isin(unique_asin)]
df_review_reduced = df_review[df_review['asin'].isin(unique_asin)]
df_meta_reduced = df_meta[df_meta['asin'].isin(unique_asin)].reset_index()
def get_map(df):
asin2id, id2asin = {}, {}
for idx in range(len(df)):
asin2id[df['asin'][idx]] = idx
id2asin[idx] = df['asin'][idx]
return asin2id, id2asin
print('Construct node info and graph...')
# get mapping from asin to node id and its reversed mapping
self.asin2id, self.id2asin = get_map(df_meta_reduced)
node_info = self.construct_raw_node_info(df_meta_reduced, df_review_reduced, df_qa_reduced)
edge_index, edge_types = self.create_raw_product_graph(df_meta_reduced,
columns=self.link_columns)
edge_type_dict = {0: 'also_buy', 1: 'also_view'}
processed_data = {
'node_info': node_info,
'edge_index': edge_index,
'edge_types': edge_types,
'edge_type_dict': edge_type_dict}
print(f'Saving to {self.processed_data_dir}...')
save_files(save_path=self.processed_data_dir, **processed_data)
processed_data.update({'node_types': torch.zeros(len(processed_data['node_info'])),
'node_type_dict': {0: 'product'}})
return processed_data
def post_process(self, raw_info, meta_link_types, cache_path=None):
print(f'Adding meta link types {meta_link_types}')
node_info = raw_info['node_info']
edge_type_dict = raw_info['edge_type_dict']
node_type_dict = raw_info['node_type_dict']
node_types = raw_info['node_types'].tolist()
edge_index = raw_info['edge_index'].tolist()
edge_types = raw_info['edge_types'].tolist()
n_e_types, n_n_types = len(edge_type_dict), len(node_type_dict)
for i, link_type in enumerate(meta_link_types):
if link_type == 'brand':
values = np.array([node_info_i[link_type] for node_info_i in node_info.values() if link_type in node_info_i.keys()])
indices = np.array([idx for idx, node_info_i in enumerate(node_info.values()) if link_type in node_info_i.keys()])
elif link_type in ['category', 'color']:
value_list = []
indice_list = []
for idx, node_info_i in enumerate(node_info.values()):
if link_type in node_info_i.keys():
value_list.extend(node_info_i[link_type])
indice_list.extend([idx for _ in range(len(node_info_i[link_type]))])
values = np.array(value_list)
indices = np.array(indice_list)
else:
raise Exception(f'Invalid meta link type {link_type}')
cur_n_nodes = len(node_info)
node_type_dict[n_n_types + i] = link_type
edge_type_dict[n_e_types + i] = "has_" + link_type
unique = np.unique(values)
for j, unique_j in tqdm(enumerate(unique)):
node_info[cur_n_nodes + j] = {link_type + '_name': unique_j}
ids = indices[np.array(values == unique_j)]
edge_index[0].extend(list(ids))
edge_index[1].extend([cur_n_nodes + j for _ in range(len(ids))])
edge_types.extend([i + n_e_types for _ in range(len(ids))])
node_types.extend([n_n_types + i for _ in range(len(unique))])
print(f'finished adding {link_type}')
edge_index = torch.LongTensor(edge_index)
edge_types = torch.LongTensor(edge_types)
node_types = torch.LongTensor(node_types)
files = {'node_info': node_info,
'edge_index': edge_index,
'edge_types': edge_types,
'edge_type_dict': edge_type_dict,
'node_type_dict': node_type_dict,
'node_types': node_types
}
if cache_path is not None:
save_files(cache_path, **files)
return files
def _process_brand(self, brand):
brand = brand.strip(" \".*+,-_!@#$%^&*();\/|<>\'\t\n\r\\")
if len(brand) > 3 and brand[:3] == 'by ':
brand = brand[3:]
if len(brand) > 4 and brand[-4:] == '.com':
brand = brand[:-4]
if len(brand) > 4 and brand[:4] == 'www.':
brand = brand[4:]
if len(brand) > 100:
brand = brand.split(' ')[0]
return brand
def construct_raw_node_info(self, df_meta, df_review, df_qa):
node_info = {}
for idx, asin in self.id2asin.items():
node_info[idx] = {}
node_info[idx]['review'] = []
node_info[idx]['qa'] = []
###################### Assign color ########################
def assign_colors(df_review, lower_limit=20):
# asign to color
df_review = df_review[['asin', 'style']]
df_review = df_review.dropna(subset=['style'])
raw_color_dict = {}
for idx, row in tqdm(df_review.iterrows()):
asin, style = row['asin'], row['style']
for key in style.keys():
if 'color' in key.lower():
try:
raw_color_dict[asin]
except:
raw_color_dict[asin] = []
raw_color_dict[asin].append(
style[key].strip().lower() if isinstance(style[key], str) else style[key][0].strip())
all_color_values = []
for asin in raw_color_dict.keys():
raw_color_dict[asin] = list(set(raw_color_dict[asin]))
all_color_values.extend(raw_color_dict[asin])
print('number of all colors', len(all_color_values))
color_counter = Counter(all_color_values)
print('number of unique colors', len(color_counter))
color_counter = {k: v for k, v in sorted(color_counter.items(), key=lambda item: item[1], reverse=True)}
selected_colors = []
for color, number in color_counter.items():
if number > lower_limit and len(color) > 2 and len(color.split(' ')) < 5 and color.isnumeric() is False:
selected_colors.append(color)
print('number of selected colors', len(selected_colors))
filtered_color_dict = {}
total_color_connections = 0
for asin in raw_color_dict.keys():
filtered_color_dict[asin] = []
for value in raw_color_dict[asin]:
if value in selected_colors:
filtered_color_dict[asin].append(value)
total_color_connections += len(filtered_color_dict[asin])
print('number of linked products', len(filtered_color_dict))
print('number of total connections', total_color_connections)
return filtered_color_dict
filtered_color_dict_path = os.path.join('data/amazon/intermediate',
'filtered_color_dict.pkl')
if os.path.exists(filtered_color_dict_path):
with open(filtered_color_dict_path, 'rb') as f:
filtered_color_dict = pickle.load(f)
else:
filtered_color_dict = assign_colors(df_review)
with open(filtered_color_dict_path, 'wb') as f:
pickle.dump(filtered_color_dict, f)
for i in tqdm(range(len(df_meta))):
df_meta_i = df_meta.iloc[i]
asin = df_meta_i['asin']
idx = self.asin2id[asin]
try:
color = filtered_color_dict[asin]
if len(color):
node_info[idx]['color'] = color
except: pass
print('loaded color')
####################################################################
for i in tqdm(range(len(df_meta))):
df_meta_i = df_meta.iloc[i]
asin = df_meta_i['asin']
idx = self.asin2id[asin]
for column in self.meta_columns:
if column == 'brand':
brand = self._process_brand(clean_data(df_meta_i[column]))
if len(brand) > 1:
node_info[idx]['brand'] = brand
elif column == 'category':
category_list = []
for category in df_meta_i[column]:
category = category.lower()
if category in self.SUB_CATEGORIES:
category_list.append(category)
if len(category_list) > 0:
node_info[idx]['category'] = category_list
else:
node_info[idx][column] = clean_data(df_meta_i[column])
review_columns = self.review_columns
review_columns.remove('style')
for name, df in zip(['review', 'qa'], [df_review, df_qa]):
for i in tqdm(range(len(df))):
df_i = df.iloc[i]
asin = df_i['asin']
idx = self.asin2id[asin]
node_info[idx][name].append(
df_row_to_dict(df_i, colunm_names=self.review_columns \
if name == 'review' else self.qa_columns))
import pdb; pdb.set_trace()
return node_info
def create_raw_product_graph(self, df, columns):
edge_types = []
edge_index = [[], []]
for idx in range(len(df)):
out_node = self.asin2id[df['asin'].iloc[idx]]
for edge_type_id, edge_type in enumerate(columns):
in_nodes = []
if not isinstance(df[edge_type].iloc[idx], list):
continue
for i in df[edge_type].iloc[idx]:
try:
in_nodes.append(self.asin2id[i])
except KeyError:
continue
edge_types.extend([edge_type_id for _ in range(len(in_nodes))])
edge_index[0].extend([out_node for _ in range(len(in_nodes))])
edge_index[1].extend(in_nodes)
return torch.LongTensor(edge_index), torch.LongTensor(edge_types)
def has_brand(self, idx, brand):
try:
b = self[idx].brand
if len(b) > 4 and b[-4:] == '.com': b = b[:-4]
if len(brand) > 4 and brand[-4:] == '.com': brand = brand[:-4]
return b.lower().strip("\"") == brand.lower().strip("\"")
except:
return False
def has_also_buy(self, idx, also_buy_item):
try:
also_buy_lst = self.get_neighbor_nodes(idx, 'also_buy')
return also_buy_item in also_buy_lst
except:
return False
def has_also_view(self, idx, also_view_item):
try:
also_buy_lst = self.get_neighbor_nodes(idx, 'also_view')
return also_view_item in also_buy_lst
except:
return False
# read review files
def read_review(path):
def parse(path):
g = gzip.open(path, 'rb')
for l in g:
yield json.loads(l)
def getDF(path):
i = 0
df = {}
for d in parse(path):
df[i] = d
i += 1
return pd.DataFrame.from_dict(df, orient='index')
return getDF(path)
# read qa files
def read_qa(path):
def parse(path):
g = gzip.open(path, 'rb')
for l in g:
yield eval(l)
def getDF(path):
i = 0
df = {}
for d in parse(path):
df[i] = d
i += 1
return pd.DataFrame.from_dict(df, orient='index')
return getDF(path)
|