File size: 27,143 Bytes
0c3992e
 
 
 
 
 
 
 
 
a00d62c
0c3992e
 
 
 
 
 
 
 
 
c83dcbf
bfaa442
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c77efb7
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5869430
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
c77efb7
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import os
import os.path as osp
import gzip
import pickle
import json
import torch
import pandas as pd
import numpy as np
from langdetect import detect
import gdown
from huggingface_hub import hf_hub_download
import zipfile
from ogb.nodeproppred import NodePropPredDataset
from ogb.utils.url import download_url, extract_zip
from src.tools.process_text import clean_data, compact_text, decode_escapes
from src.benchmarks.semistruct.knowledge_base import SemiStructureKB
from src.tools.io import save_files, load_files

PROCESSED_DATASET = {
    "repo": "snap-stanford/stark",
    "file": "skb/mag/processed.zip",
}

class MagSemiStruct(SemiStructureKB):
    
    test_columns = ['title', 'abstract', 'text']
    candidate_types = ['paper']

    node_type_dict =  {0: 'author', 1: 'institution', 2: 'field_of_study', 3: 'paper'}
    edge_type_dict = {
        0: 'author___affiliated_with___institution',
        1: 'paper___cites___paper', 
        2: 'paper___has_topic___field_of_study',
        3: 'author___writes___paper'
        }
    node_attr_dict = {'paper': ['title', 'abstract', 'publication date', 'venue'],
                      'author': ['name'],
                      'institution': ['name'],
                      'field_of_study': ['name']}
    ogbn_papers100M_cache_url = 'https://drive.google.com/uc?id=1BWHBIukoVsCsJ2kCRPKbXXrh_rHdluIp'
    ogbn_papers100M_url = 'https://snap.stanford.edu/ogb/data/misc/ogbn_papers100M/paperinfo.zip'
    mag_mapping_url = 'https://zenodo.org/records/2628216/files'
    
    def __init__(self, root, download_processed=True, **kwargs):
        '''
        Args:
            root (str): root directory to store the dataset folder
            download_processed (bool): whether to download the processed data
        '''

        self.root = root 
        schema_dir=osp.join(root, 'schema'),                       
        self.raw_data_dir = osp.join(self.root, 'raw')
        self.processed_data_dir = osp.join(self.root, 'processed')  
        self.graph_data_root = osp.join(self.raw_data_dir, 'ogbn_mag')
        self.text_root = osp.join(self.raw_data_dir, 'ogbn_papers100M')

        # existing dirs/files
        self.schema_dir = schema_dir
        self.mag_mapping_dir = osp.join(self.graph_data_root, 'mag_mapping')
        self.ogbn_mag_mapping_dir = osp.join(self.graph_data_root, 'mapping')
        self.title_path = osp.join(self.text_root, 'paperinfo/idx_title.tsv')
        self.abstract_path = osp.join(self.text_root, 'paperinfo/idx_abs.tsv')

        # new files
        self.mag_metadata_cache_dir = osp.join(self.processed_data_dir, 'mag_cache')
        self.paper100M_text_cache_dir = osp.join(self.processed_data_dir, 'paper100M_cache')
        self.merged_filtered_path = osp.join(self.paper100M_text_cache_dir, 'idx_title_abs.tsv')
        os.makedirs(self.mag_metadata_cache_dir, exist_ok=True)
        os.makedirs(self.paper100M_text_cache_dir, exist_ok=True)

        if not osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')) and download_processed:
            print('Downloading processed data...')
            processed_path = hf_hub_download(
                PROCESSED_DATASET["repo"],
                PROCESSED_DATASET["file"],
                repo_type="dataset"
            )
            with zipfile.ZipFile(processed_path, 'r') as zip_ref:
                zip_ref.extractall(self.root)
            os.remove(processed_path)
            print('Downloaded processed data!')

        if osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')):
            print(f'loaded processed data from {self.processed_data_dir}!')
            processed_data = load_files(self.processed_data_dir)
        else:
            print('start processing raw data')
            processed_data = self._process_raw()
        processed_data.update({'node_type_dict': self.node_type_dict, 
                               'edge_type_dict': self.edge_type_dict})
        super(MagSemiStruct, self).__init__(**processed_data, **kwargs)

    def load_edge(self, edge_type):
        edge_dir = osp.join(self.graph_data_root, f"raw/relations/{edge_type}/edge.csv.gz")
        edge_type_dir = osp.join(self.graph_data_root, f"raw/relations/{edge_type}/edge_reltype.csv.gz")
        num_dir = osp.join(self.graph_data_root, f"raw/relations/{edge_type}/num-edge-list.csv.gz")
        edge = pd.read_csv(edge_dir, names=['src', 'dst'])
        
        edge_t = pd.read_csv(edge_type_dir, names=['type'])
        edge_n = pd.read_csv(num_dir, names=['num'])
        edge_num = edge_n['num'].tolist()

        edge = [edge['src'].tolist(), edge['dst'].tolist(), edge_t['type'].tolist()]
        edge = torch.LongTensor(edge)

        return edge, edge_num
    
    def load_meta_data(self):
        
        mag_csv = {}
        if osp.exists(osp.join(self.mag_metadata_cache_dir, 'paper_data.csv')):
            print('start loading MAG data from cache')
            for t in ['author', 'institution', 'field_of_study', 'paper']:
                mag_csv[t] = pd.read_csv(osp.join(self.mag_metadata_cache_dir, f'{t}_data.csv'))
            author_data, paper_data = mag_csv['author'], mag_csv['paper']
            field_of_study_data = mag_csv['field_of_study']
            institution_data = mag_csv['institution']
            print('done!')
        else:
            print('start loading MAG data, it might take a while...')
            full_attr_path = osp.join(self.schema_dir, 'mag.json')
            reduced_attr_path = osp.join(self.schema_dir, 'reduced_mag.json')

            full_attr = json.load(open(full_attr_path, 'r'))
            reduced_attr = json.load(open(reduced_attr_path, 'r'))

            loaded_csv = {}
            for key in reduced_attr.keys():
                column_nums = [full_attr[key].index(i) for i in reduced_attr[key]]
                file = osp.join(self.mag_mapping_dir, key + '.txt.gz')
                if not osp.exists(file):
                    try:
                        download_url(f'{self.mag_mapping_url}/{key}.txt.gz', self.mag_mapping_dir)
                    except Exception as error:
                        print(f'Download failed or {key} data not found, please download from {self.mag_mapping_url} to {file}')
                        raise error
                loaded_csv[key] = pd.read_csv(file, header=None, sep='\t', usecols=column_nums)
                loaded_csv[key].columns = reduced_attr[key]

            print('processing and merging meta data...')
            author_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, f"author_entidx2name.csv.gz"), names=['id', 'AuthorId'], skiprows=[0])
            field_of_study_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, f"field_of_study_entidx2name.csv.gz"), names=['id', 'FieldOfStudyId'], skiprows=[0])
            institution_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, f"institution_entidx2name.csv.gz"), names=['id', 'AffiliationId'], skiprows=[0])
            paper_data = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, f"paper_entidx2name.csv.gz"), names=['id', 'PaperId'], skiprows=[0])

            loaded_csv['Papers'].rename(columns={'JournalId ': 'JournalId', 'Rank': 'PaperRank', 'CitationCount': 'PaperCitationCount'}, inplace=True)
            loaded_csv['Journals'].rename(columns={'DisplayName': 'JournalDisplayName', 'Rank': 'JournalRank', 'CitationCount': 'JournalCitationCount', 'PaperCount': 'JournalPaperCount'}, inplace=True)
            loaded_csv['ConferenceSeries'].rename(columns={'DisplayName': 'ConferenceSeriesDisplayName', 'Rank': 'ConferenceSeriesRank', 'CitationCount': 'ConferenceSeriesCitationCount', 'PaperCount': 'ConferenceSeriesPaperCount'}, inplace=True)
            loaded_csv['ConferenceInstances'].rename(columns={'DisplayName': 'ConferenceInstancesDisplayName', 'CitationCount': 'ConferenceInstanceCitationCount', 'PaperCount': 'ConferenceInstancesPaperCount'}, inplace=True)

            author_data = author_data.merge(loaded_csv['Authors'], on='AuthorId', how='left')
            field_of_study_data = field_of_study_data.merge(loaded_csv['FieldsOfStudy'], on='FieldOfStudyId', how='left')
            institution_data = institution_data.merge(loaded_csv['Affiliations'], on='AffiliationId', how='left')
            paper_data = paper_data.merge(loaded_csv['Papers'], on='PaperId', how='left')

            paper_data['JournalId'] = paper_data['JournalId'].apply(lambda x: float(x)).apply(lambda x: -1 if np.isnan(x) else int(x))
            paper_data = paper_data.merge(loaded_csv['Journals'], on='JournalId', how='left')

            paper_data = paper_data.merge(loaded_csv['ConferenceSeries'], on='ConferenceSeriesId', how='left')

            paper_data['ConferenceInstanceId'] = paper_data['ConferenceInstanceId'].apply(lambda x: float(x)).apply(lambda x: -1 if np.isnan(x) else int(x))
            paper_data = paper_data.merge(loaded_csv['ConferenceInstances'], on='ConferenceInstanceId', how='left')

            for csv_data in [author_data, field_of_study_data, institution_data, paper_data]:
                csv_data.columns = csv_data.columns.str.strip()
                for col in csv_data.columns:
                    csv_data[col] = csv_data[col].apply(lambda x: -1 if isinstance(x, float) and np.isnan(x) else x)
                    if 'rank' in col.lower() or 'count' in col.lower() or 'level' in col.lower() or 'year' in col.lower() or col.lower().endswith('id'):
                        csv_data[col] = csv_data[col].apply(lambda x: int(x) if isinstance(x, float) else x)
            
            mag_csv = {'author': author_data, 
                       'institution': institution_data, 
                       'field_of_study': field_of_study_data, 
                       'paper': paper_data}
            
            for t in ['author', 'institution', 'field_of_study', 'paper']:
                mag_csv[t].to_csv(osp.join(self.mag_metadata_cache_dir, f'{t}_data.csv'), index=False)
            author_data, paper_data = mag_csv['author'], mag_csv['paper']
            field_of_study_data = mag_csv['field_of_study']
            institution_data = mag_csv['institution']

        # create init_id to mag_id mapping
        author_data['type'] = 'author'
        author_data.rename(columns={'id': 'id', 'AuthorId': 'mag_id'}, inplace=True)

        institution_data['type'] = 'institution'
        institution_data.rename(columns={'id': 'id', 'AffiliationId': 'mag_id'}, inplace=True)

        field_of_study_data['type'] = 'field_of_study'
        field_of_study_data.rename(columns={'id': 'id', 'FieldOfStudyId': 'mag_id'}, inplace=True)

        paper_data['type'] = 'paper'
        paper_data.rename(columns={'id': 'id', 'PaperId': 'mag_id'}, inplace=True)
        return author_data, field_of_study_data, institution_data, paper_data

    def load_english_paper_text(self, mag_ids, download_cache=True):
        def is_english(text):
            try:
                return detect(text) == 'en'
            except:
                return False
        if not osp.exists(self.merged_filtered_path):
            if download_cache:
                # We provided cache here to avoid processing the large file for a long time
                try:
                    gdown.download(self.ogbn_papers100M_cache_url, 
                                   self.merged_filtered_path, quiet=False)
                except Exception as error:
                    print('Try upgrading your gdown package with `pip install gdown --upgrade`')
                    raise error
            else:
                if not osp.exists(self.title_path):  
                    raw_text_path = download_url(self.ogbn_papers100M_url, self.text_root)
                    extract_zip(raw_text_path, self.text_root)
                print('start read title...')
                title = pd.read_csv(self.title_path, sep='\t', header=None)
                title.columns = ["mag_id", "title"]
                print('filtering title in English...')

                # filter the title that's in mag_ids
                title = title[title['mag_id'].apply(lambda x: x in mag_ids)]
                title_en = title[title['title'].apply(is_english)]

                print('start read abstract...')
                abstract = pd.read_csv(self.abstract_path, sep='\t', header=None)
                abstract.columns = ["mag_id", "abstract"]
                print('filtering abstract in English...')

                abstract = abstract[abstract['mag_id'].apply(lambda x: x in mag_ids)]
                abstract_en = abstract[abstract['abstract'].apply(is_english)]

                print('start merging title and abstract...')
                title_abs_en = pd.merge(title, abs, how="outer", on="mag_id", sort=True)
                title_abs_en.to_csv(self.merged_filtered_path, sep="\t", header=True, index=False)
                
        print('loading merged and filtered title and abstract (English)...')
        title_abs_en = pd.read_csv(self.merged_filtered_path, sep='\t')
        title_abs_en.columns = ['mag_id', 'title', 'abstract']
        print('done!')

        return title_abs_en

    def get_map(self, df):
        mag2id, id2mag = {}, {}
        for idx in range(len(df)):
            mag2id[df['mag_id'][idx]] = idx
            id2mag[idx] = df['mag_id'][idx]
        return mag2id, id2mag
    
    def get_doc_info(self, idx, compact=False, 
                     add_rel=True, n_rel=-1) -> str:
        node = self[idx]
        if node.type == 'author':
            doc = f'- author name: {node.DisplayName}\n'
            if node.PaperCount != -1:
                doc += f'- author paper count: {node.PaperCount}\n'
            if node.CitationCount != -1:
                doc += f'- author citation count: {node.CitationCount}\n'
            doc = doc.replace('-1', 'Unknown')

        elif node.type == 'paper':
            doc = ' - paper title: ' + node.title + '\n'
            doc += ' - abstract: ' + node.abstract.replace('\r', '').rstrip('\n') + '\n'
            if str(node.Date) != '-1':
                doc += ' - publication date: ' + str(node.Date) + '\n'
            if str(node.OriginalVenue) != '-1':
                doc += ' - venue: ' + node.OriginalVenue + '\n'
            elif str(node.JournalDisplayName) != '-1':
                doc += ' - journal: ' + node.JournalDisplayName + '\n'
            elif str(node.ConferenceSeriesDisplayName) != '-1':
                doc += ' - conference: ' + node.ConferenceSeriesDisplayName + '\n'
            elif str(node.ConferenceInstancesDisplayName) != '-1':
                doc += ' - conference: ' + node.ConferenceInstancesDisplayName + '\n'

        elif node.type == 'field_of_study':
            doc = ' - field of study: ' + node.DisplayName + '\n' 
            if node.PaperCount != -1:
                doc += f'- field paper count: {node.PaperCount}\n'
            if node.CitationCount != -1:
                doc += f'- field citation count: {node.CitationCount}\n'
            doc = doc.replace('-1', 'Unknown')
            
        elif node.type == 'institution':
            doc = ' - institution: ' + node.DisplayName + '\n' 
            if node.PaperCount != -1:
                doc += f'- institution paper count: {node.PaperCount}\n'
            if node.CitationCount != -1:
                doc += f'- institution citation count: {node.CitationCount}\n'
            doc = doc.replace('-1', 'Unknown')
        
        if add_rel and node.type == 'paper':
            doc += self.get_rel_info(idx, n_rel=n_rel)

        if compact:
            doc = compact_text(doc)
        return doc

    def get_rel_info(self, idx, rel_types=None, n_rel=-1):
        doc = ''
        rel_types = self.rel_type_lst() if rel_types is None else rel_types
        for edge_t in rel_types:
            node_ids = torch.LongTensor(self.get_neighbor_nodes(idx, edge_t)).tolist()
            if len(node_ids) == 0: 
                continue
            node_type = self.node_types[node_ids[0]]
            str_edge = edge_t.replace('___', ' ')
            doc += f"\n{str_edge}: "
            
            if n_rel > 0 and edge_t == 'paper___cites___paper':
                node_ids = node_ids[torch.randperm(len(node_ids))[:n_rel]].tolist()
            neighbors = []
            for i in node_ids:
                if self[i].type == 'paper':
                    neighbors.append(f'\"{self[i].title}\"')
                elif self[i].type == 'author':
                    if not str(self[i].DisplayName) == '-1':
                        institutions = self.get_neighbor_nodes(i, "author___affiliated_with___institution")
                        for inst in institutions:
                            assert self[inst].type == 'institution'
                        str_institutions = [self[j].DisplayName for j in institutions if not str(self[j].DisplayName) == '-1']
                        if len(str_institutions) > 0:
                            str_institutions = ', '.join(str_institutions)
                            neighbors.append(f'{self[i].DisplayName} ({str_institutions})')
                        else:
                            neighbors.append(f'{self[i].DisplayName}')
                else:
                    if not str(self[i].DisplayName) == '-1':
                        neighbors.append(f'{self[i].DisplayName}')
            neighbors = '(' + ', '.join(neighbors) + '),'
            doc += neighbors
        if len(doc): 
            doc = '- relations:\n' + doc
        return doc 
    
    def _process_raw(self):
        NodePropPredDataset(name='ogbn-mag', root=self.raw_data_dir)
        author_data, field_of_study_data, institution_data, paper_data = self.load_meta_data()
        paper_text_data = self.load_english_paper_text(paper_data['mag_id'].tolist())

        print('precessing graph data...')
        author_id_to_mag = {row['id']: row['mag_id'] for _, row in author_data.iterrows()}
        institution_id_to_mag = {row['id']: row['mag_id'] for _, row in institution_data.iterrows()}
        field_of_study_id_to_mag = {row['id']: row['mag_id'] for _, row in field_of_study_data.iterrows()}
        paper_mapping = pd.read_csv(osp.join(self.ogbn_mag_mapping_dir, f"paper_entidx2name.csv.gz"), names=['id', 'mag_id'], skiprows=[0])
        mag_to_paper_id, paper_id_to_mag = self.get_map(paper_mapping)

        unique_paper_id = paper_text_data['mag_id'].unique()
        unique_paper_id = torch.unique(torch.tensor(unique_paper_id))
        node_type_edge = {
            0:'author___writes___paper', 
            2:'paper___has_topic___field_of_study', 
            3:'paper___cites___paper'}
        node_type_overlapping_node = {}
        node_type_overlapping_edge = {}

        # from mag_id to id
        for k, v in mag_to_paper_id.items():
            if k not in unique_paper_id:
                continue
            mask = unique_paper_id == k
            unique_paper_id[mask] = v

        # load edge data
        print('start loading edge data')
        for node_type, paper_rel in node_type_edge.items():
            print(node_type, paper_rel)
            edge, edge_num = self.load_edge(paper_rel)
            # Identify edges connected to target nodes
            if node_type == 3:
                target_array = unique_paper_id.numpy()
                edge_array = edge.numpy()
                mask = np.isin(edge_array[0], target_array) & np.isin(edge_array[1], target_array)
                valid_edges_array = edge_array[:, mask]
                valid_edges_tensor = torch.from_numpy(valid_edges_array)
                node_type_overlapping_node[node_type] = unique_paper_id
                node_type_overlapping_edge[node_type] = valid_edges_tensor
                print(f'{node_type} has {unique_paper_id.shape[0]} nodes left,  and {valid_edges_tensor.t().shape[0]} edges left.')
                continue
            else:
                edge = edge.t()
                connected_edges_list = [] 
                for target_node in unique_paper_id:
                    # Find the edges connected to the current target node
                    if node_type == 0:
                        mask = edge[:, 1] == target_node.item()
                        current_connected_edges = edge[mask].clone() 
                    elif node_type == 2:
                        mask = edge[:, 0] == target_node.item()
                        current_connected_edges = edge[mask].clone() 
                    
                    # Collect the other ends of the connected edges
                    connected_edges_list.append(current_connected_edges)
                    del mask
                    del current_connected_edges
                    # print(len(connected_edges_list))

                connected_edges = torch.cat(connected_edges_list, dim=0)
                if node_type == 0:
                    other_ends = torch.unique(connected_edges.t()[0])
                elif node_type == 2:
                    other_ends = torch.unique(connected_edges.t()[1])

                node_type_overlapping_node[node_type] = other_ends
                node_type_overlapping_edge[node_type] = connected_edges.t()
                print(f'{node_type} has {other_ends.shape[0]} nodes left,  and {connected_edges.shape[0]} edges left.')

        # specifically choose for institution by author
        edge, edge_num = self.load_edge('author___affiliated_with___institution')
        edge = edge.t()
        connected_edges_list = []
        for target_node in node_type_overlapping_node[0]:
            mask = edge[:, 0] == target_node
            current_connected_edges = edge[mask].clone()
            # Collect the other ends of the connected edges
            connected_edges_list.append(current_connected_edges)

        connected_edges = torch.cat(connected_edges_list, dim=0)
        other_ends = torch.unique(connected_edges.t()[1])

        node_type_overlapping_node[1] = other_ends
        node_type_overlapping_edge[1] = connected_edges.t()
        print(f'1 has {other_ends.shape[0]} nodes left,  and {connected_edges.shape[0]} edges left.')

        # save shared nodes in node_type_overlapping_node and shared edges in node_type_overlapping_edge
        tot_n = sum([len(node_type_overlapping_node[i]) for i in range(4)])

        # the order of re-indexing is author, institution, field_of_study, paper
        domain_mappings = {0: author_id_to_mag, 
                           1: institution_id_to_mag, 
                           2: field_of_study_id_to_mag, 
                           3: paper_id_to_mag}
        new_domain_mappings = {}
        domain_old_to_new = {}
        id_to_mag = {}
        offset = 0
        node_type_overlapping_node_sort = {k: node_type_overlapping_node[k] for k in sorted(node_type_overlapping_node.keys())}

        # start to re-index 
        print('start re-indexing')
        for i, remain_node in node_type_overlapping_node_sort.items():
            old_to_new_mappings = {key: id + offset for id, key in enumerate(remain_node.tolist())}
            updated_dict = {value: domain_mappings[i][key] for key, value in old_to_new_mappings.items()}
            print(f'{i} has {len(updated_dict)} nodes left')
            domain_old_to_new[i] = old_to_new_mappings
            id_to_mag.update(updated_dict)
            new_domain_mappings[i] = updated_dict
            offset += len(node_type_overlapping_node[i])

        # check last index equals tot_n
        assert offset == tot_n
        edges_full = torch.cat([node_type_overlapping_edge[i] for i in range(4)], dim=1)

        # re-index edges 
        # Different types of nodes all start from 0, need to re-index according to types
        d_of_mapping_dict = {
            0: [domain_old_to_new[0], domain_old_to_new[3]], 
            1: [domain_old_to_new[0], domain_old_to_new[1]], 
            2: [domain_old_to_new[3], domain_old_to_new[2]], 
            3: [domain_old_to_new[3], domain_old_to_new[3]]}

        for i, remain_edge in node_type_overlapping_edge.items():
            edges = remain_edge[:2]
            edge_types = remain_edge[2]
            new_edges = edges.clone()
            dict1 = d_of_mapping_dict[i][0]
            dict2 = d_of_mapping_dict[i][1]

            # Update the first dimension using dict1
            for old, new in dict1.items():
                new_edges[0, edges[0] == old] = new

            # Update the second dimension using dict2
            for old, new in dict2.items():
                new_edges[1, edges[1] == old] = new

            final_edges = torch.cat([new_edges, edge_types.unsqueeze(0)], dim=0)
            node_type_overlapping_edge[i] = final_edges

        edges_final = torch.cat([node_type_overlapping_edge[i] for i in range(4)], dim=1)
        assert edges_final.shape == edges_full.shape
        edge_index = torch.LongTensor(edges_final[:2])
        edge_types = torch.LongTensor(edges_final[2])

        # re-index nodes
        author_data['new_id'] = author_data['id'].map(domain_old_to_new[0])
        author_data.dropna(subset=['new_id'], inplace=True)
        author_data['new_id'] = author_data['new_id'].astype(int)
        institution_data['new_id'] = institution_data['id'].map(domain_old_to_new[1])
        institution_data.dropna(subset=['new_id'], inplace=True)
        institution_data['new_id'] = institution_data['new_id'].astype(int)
        field_of_study_data['new_id'] = field_of_study_data['id'].map(domain_old_to_new[2])
        field_of_study_data.dropna(subset=['new_id'], inplace=True)
        field_of_study_data['new_id'] = field_of_study_data['new_id'].astype(int)
        paper_data['new_id'] = paper_data['id'].map(domain_old_to_new[3])
        paper_data.dropna(subset=['new_id'], inplace=True)
        paper_data['new_id'] = paper_data['new_id'].astype(int)

        # add text data onto the graph(paper nodes)
        merged_df = pd.merge(paper_data, paper_text_data, on='mag_id', how='outer')
        merged_df.dropna(subset=['new_id'], inplace=True)
        merged_df['new_id'] = merged_df['new_id'].astype(int)
        merged_df['mag_id'] = merged_df['mag_id'].astype(int)
        merged_df = merged_df.drop_duplicates(subset=['new_id'])

        # record node_info into dict
        node_frame = {0: author_data, 1: institution_data, 2: field_of_study_data, 3: merged_df}
        node_info = {}
        node_types = []
        for node_type, frame in node_frame.items():
            for idx, row in frame.iterrows():
                # csv_row to dict
                node_info[row['new_id']] = row.to_dict()
                node_types.append(node_type)
        node_types = torch.tensor(node_types)
        if len(node_types) != tot_n:
            raise ValueError('node_types length does not match tot_n')

        processed_data = {
            'node_info': node_info, 
            'edge_index': edge_index, 
            'edge_types': edge_types,
            'node_types': node_types
            }

        print('start saving processed data')
        save_files(save_path=self.processed_data_dir, **processed_data)

        return processed_data