Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,582 Bytes
0c3992e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from bs4 import BeautifulSoup
import string
from langchain.text_splitter import RecursiveCharacterTextSplitter
import re
from collections import Counter
import codecs
import re
import codecs
def compact_text(text):
text = text.replace("\n", ". ").replace("- ", "")
text = text.replace(": .", ":").replace(":.", ":")
text = text.replace(" ", " ")
text = text.replace(".. ", ". ")
return text
def remove_punctuation(text):
for punctuation in string.punctuation:
text = text.replace(punctuation, '')
return text
def clean_data(item):
'''
clean the text data
Args:
item (Union[str, list, dict]): An object that contains text data which is cleaned iteratively
Return:
the cleaned data in the same format as item
'''
if isinstance(item, str):
item = ' '.join(BeautifulSoup(item, "lxml").text.split())
elif isinstance(item, list):
item = [clean_data(i) for i in item]
elif isinstance(item, dict):
item = {remove_punctuation(clean_data(k).lower()).replace(' ', '_'): clean_data(i) for k, i in item.items()}
return item
def chunk_text(text, chunk_size):
custom_text_splitter = RecursiveCharacterTextSplitter(
chunk_size = chunk_size,
chunk_overlap = chunk_size // 5,
# Use length of the text as the size measure
length_function = len
)
# Create the chunks
texts = custom_text_splitter.create_documents([text])
chunks = [text.page_content for text in texts]
return chunks
def clean_dict(dictionary: dict, remove_values=['', 'nan']) -> dict:
'''
Clean the dictionary by removing specific values
Args:
dictionary (dict): a dictionary
'''
new_dict = {}
for k, v in dictionary.items():
if isinstance(v, dict):
new_dict[k] = clean_dict(v, remove_values)
elif str(v) in remove_values:
pass
else:
new_dict[k] = v
return new_dict
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def recall_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
recall = 1.0 * num_same / len(ground_truth_tokens)
return recall
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return float(normalize_answer(prediction) == normalize_answer(ground_truth))
# from https://code.activestate.com/recipes/577781-pluralize-word-convert-singular-word-to-its-plural/
ABERRANT_PLURAL_MAP = {
'appendix': 'appendices',
'barracks': 'barracks',
'cactus': 'cacti',
'child': 'children',
'criterion': 'criteria',
'deer': 'deer',
'echo': 'echoes',
'elf': 'elves',
'embargo': 'embargoes',
'focus': 'foci',
'fungus': 'fungi',
'goose': 'geese',
'hero': 'heroes',
'hoof': 'hooves',
'index': 'indices',
'knife': 'knives',
'leaf': 'leaves',
'life': 'lives',
'man': 'men',
'mouse': 'mice',
'nucleus': 'nuclei',
'person': 'people',
'phenomenon': 'phenomena',
'potato': 'potatoes',
'self': 'selves',
'syllabus': 'syllabi',
'tomato': 'tomatoes',
'torpedo': 'torpedoes',
'veto': 'vetoes',
'woman': 'women',
}
VOWELS = set('aeiou')
import nltk
from nltk.corpus import wordnet
def synonym_extractor(phrase):
synonyms = []
for syn in wordnet.synsets(phrase):
if '.n.' in syn.name():
for l in syn.lemmas():
synonyms.append(l.name())
return list(set(synonyms))
def pluralize(singular):
"""Return plural form of given lowercase singular word (English only). Based on
ActiveState recipe http://code.activestate.com/recipes/413172/
>>> pluralize('')
''
>>> pluralize('goose')
'geese'
>>> pluralize('dolly')
'dollies'
>>> pluralize('genius')
'genii'
>>> pluralize('jones')
'joneses'
>>> pluralize('pass')
'passes'
>>> pluralize('zero')
'zeros'
>>> pluralize('casino')
'casinos'
>>> pluralize('hero')
'heroes'
>>> pluralize('church')
'churches'
>>> pluralize('x')
'xs'
>>> pluralize('car')
'cars'
"""
if not singular:
return ''
plural = ABERRANT_PLURAL_MAP.get(singular)
if plural:
return plural
root = singular
try:
if singular[-1] == 'y' and singular[-2] not in VOWELS:
root = singular[:-1]
suffix = 'ies'
elif singular[-1] == 's':
if singular[-2] in VOWELS:
if singular[-3:] == 'ius':
root = singular[:-2]
suffix = 'i'
else:
root = singular[:-1]
suffix = 'ses'
else:
suffix = 'es'
elif singular[-2:] in ('ch', 'sh'):
suffix = 'es'
else:
suffix = 's'
except IndexError:
suffix = 's'
plural = root + suffix
return plural
def decode_escapes(s):
ESCAPE_SEQUENCE_RE = re.compile(r'''
( \\U........ # 8-digit hex escapes
| \\u.... # 4-digit hex escapes
| \\x.. # 2-digit hex escapes
| \\[0-7]{1,3} # Octal escapes
| \\N\{[^}]+\} # Unicode characters by name
| \\[\\'"abfnrtv] # Single-character escapes
)''', re.UNICODE | re.VERBOSE)
def decode_match(match):
return codecs.decode(match.group(0), 'unicode-escape')
return ESCAPE_SEQUENCE_RE.sub(decode_match, s)
if __name__ == '__main__':
print(chunk_text("Based on the given product information, you need to (1) identify the product's generic category, (2) list all of the negative perspectives and their sources, and (2) extract up to five hard and five soft requirements relevant to customers' interests along with their sources. (1) For example, the product's generic category can be ", 100))
print(normalize_answer("Sparkling White Smiles Professional Sport Mouth Guards"))
print(normalize_answer("I also got a 2-pack <Sparkling White "))
print(f1_score(normalize_answer("Professional Sport Mouth Guards Sparkling White Smiles haha"), normalize_answer("Sparkling White Smiles Professional Sport Mouth Guards")))
print(recall_score(normalize_answer("Professional Sport Mouth Guards Sparkling White Smiles haha"), normalize_answer("Sparkling White Smiles Professional Sport Mouth Guards"))) |