Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import torch | |
from torch_geometric.utils.num_nodes import maybe_num_nodes | |
from typing import List, Optional, Tuple, Union | |
from torch import Tensor | |
def k_hop_subgraph( | |
node_idx: Union[int, List[int], Tensor], | |
num_hops: int, | |
edge_index: Tensor, | |
relabel_nodes: bool = False, | |
num_nodes: Optional[int] = None, | |
flow: str = 'source_to_target', | |
directed: bool = False, | |
) -> Tuple[Tensor, Tensor, Tensor, Tensor]: | |
r""" | |
Added bidirectional flow based on PyG's `k_hop_subgraph`. | |
""" | |
num_nodes = maybe_num_nodes(edge_index, num_nodes) | |
assert flow in ['source_to_target', 'target_to_source', 'bidirectional'] | |
if flow == 'target_to_source': | |
row, col = edge_index | |
elif flow == 'source_to_target': | |
col, row = edge_index | |
else: | |
col, row = torch.concat([edge_index, edge_index[[1, 0]]], dim=1) | |
node_mask = row.new_empty(num_nodes, dtype=torch.bool) | |
edge_mask = row.new_empty(row.size(0), dtype=torch.bool) | |
if isinstance(node_idx, (int, list, tuple)): | |
node_idx = torch.tensor([node_idx], device=row.device).flatten() | |
else: | |
node_idx = node_idx.to(row.device) | |
subsets = [node_idx] | |
for _ in range(num_hops): | |
node_mask.fill_(False) | |
node_mask[subsets[-1]] = True | |
torch.index_select(node_mask, 0, row, out=edge_mask) | |
subsets.append(col[edge_mask]) | |
subset, inv = torch.cat(subsets).unique(return_inverse=True) | |
inv = inv[:node_idx.numel()] | |
node_mask.fill_(False) | |
node_mask[subset] = True | |
if flow == 'bidirectional': | |
col, row = edge_index | |
if not directed: | |
edge_mask = node_mask[row] & node_mask[col] | |
edge_index = edge_index[:, edge_mask] | |
if relabel_nodes: | |
edge_index = relabel_graph(subset, edge_index, num_nodes) | |
return subset, edge_index, inv, edge_mask | |
def relabel_graph(subset, edge_index, num_nodes): | |
row, col = edge_index | |
node_idx = row.new_full((num_nodes, ), -1) | |
node_idx[subset] = torch.arange(subset.size(0), device=row.device) | |
edge_index = node_idx[edge_index] | |
return edge_index | |