snaramirez872 commited on
Commit
c018e35
·
1 Parent(s): b7d3e37

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -126,7 +126,7 @@ def lossFN(outs, targets):
126
 
127
  opt = TRNSFM.AdamW(params=mod.parameters(), lr=LEARNING_RATE)
128
 
129
- # Finetuning
130
  def train(mod, training_loader):
131
  mod.train()
132
  for _, data in tqdm(enumerate(training_loader, 0)):
@@ -144,13 +144,13 @@ def train(mod, training_loader):
144
 
145
  # StreamLit Table of Results
146
  st.title("Finetuned Model for Toxicity")
147
- st.subheader("Model: distilbert-base-uncased")
148
 
149
  def predict(tweets):
150
  mod.eval()
151
  res = []
152
  with torch.no_grad():
153
- for ins in test_loader_strings:
154
  outs = mod(input_ids=ins['input_ids'].to(device), attention_mask=ins['attention_mask'].to(device), token_type_ids=ins['token_type_ids'].to(device))
155
  probs = torch.softmax(outs[0], dim=-1)
156
  preds = torch.argmax(probs, dim=-1)
 
126
 
127
  opt = TRNSFM.AdamW(params=mod.parameters(), lr=LEARNING_RATE)
128
 
129
+ # Training and Finetuning
130
  def train(mod, training_loader):
131
  mod.train()
132
  for _, data in tqdm(enumerate(training_loader, 0)):
 
144
 
145
  # StreamLit Table of Results
146
  st.title("Finetuned Model for Toxicity")
147
+ st.subheader("Model: bert-base-uncased")
148
 
149
  def predict(tweets):
150
  mod.eval()
151
  res = []
152
  with torch.no_grad():
153
+ for ins in testing_loader:
154
  outs = mod(input_ids=ins['input_ids'].to(device), attention_mask=ins['attention_mask'].to(device), token_type_ids=ins['token_type_ids'].to(device))
155
  probs = torch.softmax(outs[0], dim=-1)
156
  preds = torch.argmax(probs, dim=-1)