Spaces:
Runtime error
Runtime error
Commit
·
d31451e
1
Parent(s):
c54c0b7
Upload 2 files
Browse files- app.py +139 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as TNN
|
3 |
+
import pandas as pd
|
4 |
+
from tqdm import tqdm
|
5 |
+
from torch.utils.data import Dataset as set, DataLoader as DL
|
6 |
+
from torch import cuda
|
7 |
+
import streamlit as st
|
8 |
+
from transformers import BertTokenizer as BT, BertModel as BM
|
9 |
+
|
10 |
+
device = 'cuda' if cuda.is_available() else 'cpu'
|
11 |
+
|
12 |
+
# Defined variables for later use
|
13 |
+
MAX_LEN = 128
|
14 |
+
TRAIN_BATCH_SIZE = 4
|
15 |
+
VALID_BATCH_SIZE = 4
|
16 |
+
LEARNING_RATE = 5e-05
|
17 |
+
|
18 |
+
modName = 'bert-base-uncased' # Pre-trained model
|
19 |
+
categories = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] # Labels
|
20 |
+
|
21 |
+
data = pd.read_csv('./train.csv')
|
22 |
+
data.drop(['id'], inplace=True, axis=1)
|
23 |
+
|
24 |
+
new = pd.DataFrame()
|
25 |
+
new['text'] = data['comment_text']
|
26 |
+
new['labels'] = data.iloc[:,1].values.tolist()
|
27 |
+
|
28 |
+
tokenizer = BT.from_pretrained(modName, truncation=True, do_lower_case=True)
|
29 |
+
|
30 |
+
class MultiLabelDataset(set):
|
31 |
+
def __init__(self, df, tokenizer, max_len):
|
32 |
+
self.tokenizer = tokenizer
|
33 |
+
self.data = df
|
34 |
+
self.text = df.text
|
35 |
+
self.targets = self.data.labels
|
36 |
+
self.max_len = max_len
|
37 |
+
|
38 |
+
def __len__(self):
|
39 |
+
return len(self.targets)
|
40 |
+
|
41 |
+
def __getitem__(self, idx):
|
42 |
+
text = str(self.text[idx])
|
43 |
+
text = " ".join(text.split())
|
44 |
+
|
45 |
+
ins = self.tokenizer.encode_plus(
|
46 |
+
text,
|
47 |
+
None,
|
48 |
+
add_special_tokens=True,
|
49 |
+
max_length=self.max_len,
|
50 |
+
pad_to_max_length=True,
|
51 |
+
return_token_type_ids=True
|
52 |
+
)
|
53 |
+
input_ids = ins['input_ids']
|
54 |
+
attention_mask = ins['attention_mask']
|
55 |
+
token_type_ids = ins["token_type_ids"]
|
56 |
+
|
57 |
+
#st.write("Input Keys: ", ins.keys()) # was used for debugging
|
58 |
+
return {
|
59 |
+
'input_ids': torch.tensor(input_ids, dtype=torch.long),
|
60 |
+
'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
|
61 |
+
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
|
62 |
+
'targets': torch.tensor(self.targets[idx], dtype=torch.float)
|
63 |
+
}
|
64 |
+
|
65 |
+
# Dataset and DataLoader
|
66 |
+
trainSize = 0.4
|
67 |
+
trainData = new.sample(frac=trainSize,random_state=200)
|
68 |
+
testData = new.drop(trainData.index).reset_index(drop=True)
|
69 |
+
trainData = trainData.reset_index(drop=True)
|
70 |
+
|
71 |
+
trainSet = MultiLabelDataset(trainData, tokenizer, MAX_LEN)
|
72 |
+
testSet = MultiLabelDataset(testData, tokenizer, MAX_LEN)
|
73 |
+
|
74 |
+
training_loader = DL(trainSet, batch_size=TRAIN_BATCH_SIZE, shuffle=True)
|
75 |
+
testing_loader = DL(testSet, batch_size=VALID_BATCH_SIZE, shuffle=True)
|
76 |
+
|
77 |
+
# model
|
78 |
+
class DistilBERTClass(TNN.Module):
|
79 |
+
def __init__(self):
|
80 |
+
super(DistilBERTClass, self).__init__()
|
81 |
+
self.l1 = BM.from_pretrained(modName)
|
82 |
+
self.pre_classifier = TNN.Linear(768, 768)
|
83 |
+
self.dropout = TNN.Dropout(0.1)
|
84 |
+
self.classifier = TNN.Linear(768, 6)
|
85 |
+
|
86 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
87 |
+
out = self.l1(input_ids=input_ids, attention_mask=attention_mask)
|
88 |
+
hidden_state = out[0]
|
89 |
+
po = hidden_state[:, 0]
|
90 |
+
po = self.pre_classifier(po)
|
91 |
+
po = TNN.Tanh()(po)
|
92 |
+
po = self.dropout(po)
|
93 |
+
outs = self.classifier(po)
|
94 |
+
return outs
|
95 |
+
|
96 |
+
mod = DistilBERTClass()
|
97 |
+
mod.to(device)
|
98 |
+
|
99 |
+
# Loss function and Optimizer
|
100 |
+
def lossFN(outs, targets):
|
101 |
+
targets = targets.unsqueeze(1).expand_as(outs)
|
102 |
+
return TNN.BCEWithLogitsLoss()(outs, targets)
|
103 |
+
|
104 |
+
opt = torch.optim.Adam(mod.parameters(), lr=LEARNING_RATE)
|
105 |
+
|
106 |
+
# Training and Finetuning
|
107 |
+
def train(mod, training_loader):
|
108 |
+
mod.train()
|
109 |
+
for _, data in tqdm(enumerate(training_loader, 0)):
|
110 |
+
input_ids = data['input_ids'].to(device, dtype=torch.long)
|
111 |
+
attention_mask = data['attention_mask'].to(device, dtype=torch.long)
|
112 |
+
token_type_ids = data['token_type_ids'].to(device, dtype=torch.long)
|
113 |
+
targets = data['targets'].to(device, dtype=torch.float)
|
114 |
+
|
115 |
+
outs = mod(input_ids, attention_mask, token_type_ids)
|
116 |
+
|
117 |
+
opt.zero_grad()
|
118 |
+
loss = lossFN(outs, targets)
|
119 |
+
loss.backward()
|
120 |
+
opt.step()
|
121 |
+
|
122 |
+
# StreamLit Table of Results
|
123 |
+
st.title("Finetuned Model for Toxicity")
|
124 |
+
st.subheader("Model: bert-base-uncased")
|
125 |
+
|
126 |
+
def predict(tweets):
|
127 |
+
mod.eval()
|
128 |
+
res = []
|
129 |
+
with torch.no_grad():
|
130 |
+
for ins in testing_loader:
|
131 |
+
outs = mod(input_ids=ins['input_ids'].to(device), attention_mask=ins['attention_mask'].to(device), token_type_ids=ins['token_type_ids'].to(device))
|
132 |
+
probs = torch.softmax(outs[0], dim=-1)
|
133 |
+
preds = torch.argmax(probs, dim=-1)
|
134 |
+
for i in range(len(tweets)):
|
135 |
+
res.append({'TWEETS': tweets[i], 'LABEL': id2label[preds[i].item()], 'PROBABILITY': probs[i][preds[i]].item()})
|
136 |
+
return res
|
137 |
+
|
138 |
+
res = predict(testing_loader)
|
139 |
+
st.table(res) # table
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
logging
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
numpy
|
5 |
+
pandas
|
6 |
+
tqdm
|