Spaces:
Runtime error
Runtime error
Commit
·
f74bf51
1
Parent(s):
4fc0ae0
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from sklearn import metrics
|
|
8 |
from torch.utils.data import Dataset as set, DataLoader as DL
|
9 |
from torch import cuda
|
10 |
import streamlit as st
|
11 |
-
from transformers import
|
12 |
|
13 |
# Defined variables for later use
|
14 |
MAX_LEN = 128
|
@@ -16,8 +16,7 @@ TRAIN_BATCH_SIZE = 4
|
|
16 |
VALID_BATCH_SIZE = 4
|
17 |
LEARNING_RATE = 5e-05
|
18 |
|
19 |
-
modName = '
|
20 |
-
|
21 |
|
22 |
categories = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] # Labels
|
23 |
|
@@ -44,7 +43,7 @@ new = pd.DataFrame()
|
|
44 |
new['text'] = data['comment_text']
|
45 |
new['labels'] = data.iloc[:,1].values.tolist()
|
46 |
|
47 |
-
tokenizer =
|
48 |
|
49 |
class MultiLabelDataset(set):
|
50 |
def __init__(self, df, tokenizer, max_len):
|
@@ -102,7 +101,7 @@ for dat in testing_loader:
|
|
102 |
class DistilBERTClass(TNN.Module):
|
103 |
def __init__(self):
|
104 |
super(DistilBERTClass, self).__init__()
|
105 |
-
self.l1 =
|
106 |
self.pre_classifier = TNN.Linear(768, 768)
|
107 |
self.dropout = TNN.Dropout(0.1)
|
108 |
self.classifier = TNN.Linear(768, 6)
|
|
|
8 |
from torch.utils.data import Dataset as set, DataLoader as DL
|
9 |
from torch import cuda
|
10 |
import streamlit as st
|
11 |
+
from transformers import BertTokenizer as BT, BertModel as BM
|
12 |
|
13 |
# Defined variables for later use
|
14 |
MAX_LEN = 128
|
|
|
16 |
VALID_BATCH_SIZE = 4
|
17 |
LEARNING_RATE = 5e-05
|
18 |
|
19 |
+
modName = 'bert-base-uncased' # Pre-trained model
|
|
|
20 |
|
21 |
categories = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] # Labels
|
22 |
|
|
|
43 |
new['text'] = data['comment_text']
|
44 |
new['labels'] = data.iloc[:,1].values.tolist()
|
45 |
|
46 |
+
tokenizer = BT.from_pretrained(modName, truncation=True, do_lower_case=True)
|
47 |
|
48 |
class MultiLabelDataset(set):
|
49 |
def __init__(self, df, tokenizer, max_len):
|
|
|
101 |
class DistilBERTClass(TNN.Module):
|
102 |
def __init__(self):
|
103 |
super(DistilBERTClass, self).__init__()
|
104 |
+
self.l1 = BM.from_pretrained(modName)
|
105 |
self.pre_classifier = TNN.Linear(768, 768)
|
106 |
self.dropout = TNN.Dropout(0.1)
|
107 |
self.classifier = TNN.Linear(768, 6)
|