File size: 6,719 Bytes
166850f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import logging
import torch.nn as nn
from fastai.vision import *

from modules.attention import *
from modules.backbone import ResTranformer
from modules.model import Model
from modules.resnet import resnet45


class BaseVision(Model):
    def __init__(self, config):
        super().__init__(config)
        self.loss_weight = ifnone(config.model_vision_loss_weight, 1.0)
        self.out_channels = ifnone(config.model_vision_d_model, 512)

        if config.model_vision_backbone == 'transformer':
            self.backbone = ResTranformer(config)
        else: self.backbone = resnet45()
        
        if config.model_vision_attention == 'position':
            mode = ifnone(config.model_vision_attention_mode, 'nearest')
            self.attention = PositionAttention(
                in_channels=self.out_channels,
                max_length=config.dataset_max_length + 1,  # additional stop token
                mode=mode,
            )
        elif config.model_vision_attention == 'attention':
            self.attention = Attention(
                in_channels=self.out_channels,
                max_length=config.dataset_max_length + 1,  # additional stop token
                n_feature=8*32,
            )
        else:
            raise Exception(f'{config.model_vision_attention} is not valid.')
        self.cls = nn.Linear(self.out_channels, self.charset.num_classes)

        if config.model_vision_checkpoint is not None:
            logging.info(f'Read vision model from {config.model_vision_checkpoint}.')
            self.load(config.model_vision_checkpoint)

    def _forward(self, b_features):
        attn_vecs, attn_scores = self.attention(b_features)  # (N, T, E), (N, T, H, W)
        logits = self.cls(attn_vecs) # (N, T, C)
        pt_lengths = self._get_length(logits)

        return {'feature': attn_vecs, 'logits': logits, 'pt_lengths': pt_lengths,
                'attn_scores': attn_scores, 'loss_weight':self.loss_weight, 'name': 'vision', 'b_features':b_features}

    def forward(self, images, *args, **kwargs):
        features = self.backbone(images, **kwargs)  # (N, E, H, W)
        return self._forward(features)
        

class BaseIterVision(BaseVision):
    def __init__(self, config):
        super().__init__(config)
        assert config.model_vision_backbone == 'transformer'
        self.iter_size = ifnone(config.model_vision_iter_size, 1)
        self.share_weights = ifnone(config.model_vision_share_weights, False)
        self.share_cnns = ifnone(config.model_vision_share_cnns, False)
        self.add_transformer = ifnone(config.model_vision_add_transformer, False)
        self.simple_trans = ifnone(config.model_vision_simple_trans, False)
        self.deep_supervision = ifnone(config.model_vision_deep_supervision, True)
        self.backbones = nn.ModuleList()
        self.trans = nn.ModuleList()
        for i in range(self.iter_size-1):
            B = None if self.share_weights else ResTranformer(config)
            if self.share_cnns:
                del B.resnet
            self.backbones.append(B)
            output_channel = self.out_channels
            if self.add_transformer:
                self.split_sizes = [output_channel]
            elif self.simple_trans:
                # self.split_sizes=[output_channel//16] + [0] * 5
                # self.split_sizes= [output_channel//16, output_channel//16, output_channel//8, output_channel//4, output_channel//2] + [0]
                self.split_sizes= [output_channel//16, output_channel//16, 0, output_channel//4, output_channel//2, output_channel]
            else:
                self.split_sizes=[output_channel//16, output_channel//16, output_channel//8, output_channel//4, output_channel//2, output_channel]
            self.trans.append(nn.Conv2d(output_channel, sum(self.split_sizes), 1))
            torch.nn.init.zeros_(self.trans[-1].weight)
        
        if config.model_vision_checkpoint is not None:
            logging.info(f'Read vision model from {config.model_vision_checkpoint}.')
            self.load(config.model_vision_checkpoint)
        cb_init = ifnone(config.model_vision_cb_init, True)
        if cb_init:
            self.cb_init()

    def load(self, source, device=None, strict=False):
        state = torch.load(source, map_location=device)
        msg = self.load_state_dict(state['model'], strict=strict)
        print(msg)

    def cb_init(self):
        model_state_dict = self.backbone.state_dict()

        for m in self.backbones:
            if m:
                print('cb_init')
                msg = m.load_state_dict(model_state_dict, strict=False)
                print(msg)

    def forward_test(self, images, *args):
        l_feats = self.backbone.resnet(images)
        b_feats = self.backbone.forward_transformer(l_feats)
        cnt = len(self.backbones)
        if cnt == 0:
            v_res = super()._forward(b_feats)
        for B,T in zip(self.backbones, self.trans):
            cnt -= 1
            extra_feats = T(b_feats).split(self.split_sizes, dim=1)
            if self.share_weights:
                v_res = super().forward(images, extra_feats=extra_feats)
            else:
                if self.add_transformer:
                    if not self.share_cnns:
                        l_feats = B.resnet(images)
                    b_feats = B.forward_transformer(extra_feats[-1] + l_feats)
                else:
                    b_feats = B(images, extra_feats=extra_feats)
                v_res = super()._forward(b_feats) if cnt==0 else None
        return v_res

    def forward_train(self, images, *args):
        l_feats = self.backbone.resnet(images)
        b_feats = self.backbone.forward_transformer(l_feats)
        v_res = super()._forward(b_feats)
        # v_res = super().forward(images)
        all_v_res = [v_res]
        for B,T in zip(self.backbones, self.trans):
            extra_feats = T(v_res['b_features']).split(self.split_sizes, dim=1)
            if self.share_weights:
                v_res = super().forward(images, extra_feats=extra_feats)
            else:
                if self.add_transformer:
                    if not self.share_cnns:
                        l_feats = B.resnet(images)
                    b_feats = B.forward_transformer(extra_feats[-1] + l_feats)
                else:
                    b_feats = B(images, extra_feats=extra_feats)
                v_res = super()._forward(b_feats)
            all_v_res.append(v_res)
        return all_v_res

    def forward(self, images, *args):
        if self.training and self.deep_supervision:
            return self.forward_train(images, *args)
        else:
            return self.forward_test(images, *args)