File size: 6,183 Bytes
f50326e
ea7e2a4
 
 
 
 
 
 
 
 
 
 
f50326e
 
 
 
 
ea7e2a4
 
 
 
 
 
f50326e
ea7e2a4
 
 
 
 
 
 
f50326e
 
 
ea7e2a4
 
f50326e
 
ea7e2a4
 
 
 
 
 
 
 
f50326e
 
ea7e2a4
f50326e
ea7e2a4
 
 
 
 
 
 
 
f50326e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7e2a4
f50326e
 
 
 
 
 
 
 
 
 
ea7e2a4
f50326e
 
 
 
ea7e2a4
f50326e
 
 
 
 
 
 
 
ea7e2a4
f50326e
 
 
 
 
 
 
 
 
 
 
 
ea7e2a4
f50326e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
from openai import OpenAI
import time
import re

# Available models
MODELS = [
    "Meta-Llama-3.1-405B-Instruct",
    "Meta-Llama-3.1-70B-Instruct",
    "Meta-Llama-3.1-8B-Instruct"
]

def create_client(api_key, base_url):
    return OpenAI(
        api_key=api_key,
        base_url=base_url
    )

def chat_with_ai(message, chat_history, system_prompt):
    messages = [
        {"role": "system", "content": system_prompt},
    ]
    
    for human, ai in chat_history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": ai})
    
    messages.append({"role": "user", "content": message})
    
    return messages

def respond(message, chat_history, model, system_prompt, thinking_budget, api_key, base_url):
    client = create_client(api_key, base_url)
    messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget))
    response = ""
    start_time = time.time()
    
    try:
        for chunk in client.chat.completions.create(
            model=model,
            messages=messages,
            stream=True
        ):
            content = chunk.choices[0].delta.content or ""
            response += content
            yield response, time.time() - start_time
    except Exception as e:
        yield f"Error: {str(e)}", time.time() - start_time

def parse_response(response):
    answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL)
    reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL)
    
    answer = answer_match.group(1).strip() if answer_match else ""
    reflection = reflection_match.group(1).strip() if reflection_match else ""
    
    steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL)
    
    return answer, reflection, steps

def process_chat(message, history, model, system_prompt, thinking_budget, api_key, base_url):
    if not api_key or not base_url:
        history.append((message, "Please provide both API Key and Base URL before starting the chat."))
        return history, history

    full_response = ""
    thinking_time = 0
    
    for response, elapsed_time in respond(message, history, model, system_prompt, thinking_budget, api_key, base_url):
        full_response = response
        thinking_time = elapsed_time
    
    if full_response.startswith("Error:"):
        history.append((message, full_response))
        return history, history

    answer, reflection, steps = parse_response(full_response)
    
    formatted_response = f"**Answer:** {answer}\n\n**Reflection:** {reflection}\n\n**Thinking Steps:**\n"
    for i, step in enumerate(steps, 1):
        formatted_response += f"**Step {i}:** {step}\n"
    
    formatted_response += f"\n**Thinking time:** {thinking_time:.2f} s"
    
    history.append((message, formatted_response))
    return history, history

with gr.Blocks() as demo:
    gr.Markdown("# Llama3.1-Instruct-O1")
    gr.Markdown("[Powered by Llama3.1 models through SN Cloud](https://sambanova.ai/fast-api?api_ref=907266)")
    
    with gr.Row():
        api_key = gr.Textbox(label="API Key", type="password")
        base_url = gr.Textbox(label="Base URL", value="https://api.endpoints.anyscale.com/v1")
    
    with gr.Row():
        model = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0])
        thinking_budget = gr.Slider(minimum=1, maximum=100, value=1, step=1, label="Thinking Budget")
    
    system_prompt = gr.Textbox(
        label="System Prompt",
        value="""
        You are a helpful assistant in normal conversation.
        When given a problem to solve, you are an expert problem-solving assistant. Your task is to provide a detailed, step-by-step solution to a given question. Follow these instructions carefully:

        1. Read the given question carefully and reset counter between <count> and </count> to {budget}
        2. Generate a detailed, logical step-by-step solution.
        3. Enclose each step of your solution within <step> and </step> tags.
        4. You are allowed to use at most {budget} steps (starting budget), keep track of it by counting down within tags <count> </count>, STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them.
        5. Do a self-reflection when you are unsure about how to proceed, based on the self-reflection and reward, decides whether you need to return to the previous steps.
        6. After completing the solution steps, reorganize and synthesize the steps into the final answer within <answer> and </answer> tags.
        7. Provide a critical, honest and subjective self-evaluation of your reasoning process within <reflection> and </reflection> tags.
        8. Assign a quality score to your solution as a float between 0.0 (lowest quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags.

        Example format:            
        <count> [starting budget] </count>
        
        <step> [Content of step 1] </step>
        <count> [remaining budget] </count>

        <step> [Content of step 2] </step>
        <reflection> [Evaluation of the steps so far] </reflection>
        <reward> [Float between 0.0 and 1.0] </reward>
        <count> [remaining budget] </count>

        <step> [Content of step 3 or Content of some previous step] </step>
        <count> [remaining budget] </count>
        
        ...
    
        <step>  [Content of final step] </step>
        <count> [remaining budget] </count>
        
        <answer> [Final Answer] </answer>

        <reflection> [Evaluation of the solution] </reflection>

        <reward> [Float between 0.0 and 1.0] </reward>
        """,
        lines=10
    )
    
    chatbot_ui = gr.Chatbot()
    msg = gr.Textbox(label="Type your message here...")
    clear = gr.Button("Clear Chat")

    chat_history = gr.State([])

    msg.submit(
        process_chat,  # Use the renamed function
        [msg, chat_history, model, system_prompt, thinking_budget, api_key, base_url],
        [chatbot_ui, chat_history]
    )
    clear.click(lambda: ([], []), None, [chatbot_ui, chat_history], queue=False)

demo.launch()