Spaces:
Running
Running
File size: 11,158 Bytes
500565b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
import torch
from detectron2.config import configurable
from detectron2.layers import ShapeSpec, batched_nms_rotated
from detectron2.structures import Instances, RotatedBoxes, pairwise_iou_rotated
from detectron2.utils.events import get_event_storage
from ..box_regression import Box2BoxTransformRotated
from ..poolers import ROIPooler
from ..proposal_generator.proposal_utils import add_ground_truth_to_proposals
from .box_head import build_box_head
from .fast_rcnn import FastRCNNOutputLayers
from .roi_heads import ROI_HEADS_REGISTRY, StandardROIHeads
logger = logging.getLogger(__name__)
"""
Shape shorthand in this module:
N: number of images in the minibatch
R: number of ROIs, combined over all images, in the minibatch
Ri: number of ROIs in image i
K: number of foreground classes. E.g.,there are 80 foreground classes in COCO.
Naming convention:
deltas: refers to the 5-d (dx, dy, dw, dh, da) deltas that parameterize the box2box
transform (see :class:`box_regression.Box2BoxTransformRotated`).
pred_class_logits: predicted class scores in [-inf, +inf]; use
softmax(pred_class_logits) to estimate P(class).
gt_classes: ground-truth classification labels in [0, K], where [0, K) represent
foreground object classes and K represents the background class.
pred_proposal_deltas: predicted rotated box2box transform deltas for transforming proposals
to detection box predictions.
gt_proposal_deltas: ground-truth rotated box2box transform deltas
"""
def fast_rcnn_inference_rotated(
boxes, scores, image_shapes, score_thresh, nms_thresh, topk_per_image
):
"""
Call `fast_rcnn_inference_single_image_rotated` for all images.
Args:
boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic
boxes for each image. Element i has shape (Ri, K * 5) if doing
class-specific regression, or (Ri, 5) if doing class-agnostic
regression, where Ri is the number of predicted objects for image i.
This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`.
scores (list[Tensor]): A list of Tensors of predicted class scores for each image.
Element i has shape (Ri, K + 1), where Ri is the number of predicted objects
for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`.
image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch.
score_thresh (float): Only return detections with a confidence score exceeding this
threshold.
nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1].
topk_per_image (int): The number of top scoring detections to return. Set < 0 to return
all detections.
Returns:
instances: (list[Instances]): A list of N instances, one for each image in the batch,
that stores the topk most confidence detections.
kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates
the corresponding boxes/scores index in [0, Ri) from the input, for image i.
"""
result_per_image = [
fast_rcnn_inference_single_image_rotated(
boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh, topk_per_image
)
for scores_per_image, boxes_per_image, image_shape in zip(scores, boxes, image_shapes)
]
return [x[0] for x in result_per_image], [x[1] for x in result_per_image]
def fast_rcnn_inference_single_image_rotated(
boxes, scores, image_shape, score_thresh, nms_thresh, topk_per_image
):
"""
Single-image inference. Return rotated bounding-box detection results by thresholding
on scores and applying rotated non-maximum suppression (Rotated NMS).
Args:
Same as `fast_rcnn_inference_rotated`, but with rotated boxes, scores, and image shapes
per image.
Returns:
Same as `fast_rcnn_inference_rotated`, but for only one image.
"""
valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1)
if not valid_mask.all():
boxes = boxes[valid_mask]
scores = scores[valid_mask]
B = 5 # box dimension
scores = scores[:, :-1]
num_bbox_reg_classes = boxes.shape[1] // B
# Convert to Boxes to use the `clip` function ...
boxes = RotatedBoxes(boxes.reshape(-1, B))
boxes.clip(image_shape)
boxes = boxes.tensor.view(-1, num_bbox_reg_classes, B) # R x C x B
# Filter results based on detection scores
filter_mask = scores > score_thresh # R x K
# R' x 2. First column contains indices of the R predictions;
# Second column contains indices of classes.
filter_inds = filter_mask.nonzero()
if num_bbox_reg_classes == 1:
boxes = boxes[filter_inds[:, 0], 0]
else:
boxes = boxes[filter_mask]
scores = scores[filter_mask]
# Apply per-class Rotated NMS
keep = batched_nms_rotated(boxes, scores, filter_inds[:, 1], nms_thresh)
if topk_per_image >= 0:
keep = keep[:topk_per_image]
boxes, scores, filter_inds = boxes[keep], scores[keep], filter_inds[keep]
result = Instances(image_shape)
result.pred_boxes = RotatedBoxes(boxes)
result.scores = scores
result.pred_classes = filter_inds[:, 1]
return result, filter_inds[:, 0]
class RotatedFastRCNNOutputLayers(FastRCNNOutputLayers):
"""
Two linear layers for predicting Rotated Fast R-CNN outputs.
"""
@classmethod
def from_config(cls, cfg, input_shape):
args = super().from_config(cfg, input_shape)
args["box2box_transform"] = Box2BoxTransformRotated(
weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS
)
return args
def inference(self, predictions, proposals):
"""
Returns:
list[Instances]: same as `fast_rcnn_inference_rotated`.
list[Tensor]: same as `fast_rcnn_inference_rotated`.
"""
boxes = self.predict_boxes(predictions, proposals)
scores = self.predict_probs(predictions, proposals)
image_shapes = [x.image_size for x in proposals]
return fast_rcnn_inference_rotated(
boxes,
scores,
image_shapes,
self.test_score_thresh,
self.test_nms_thresh,
self.test_topk_per_image,
)
@ROI_HEADS_REGISTRY.register()
class RROIHeads(StandardROIHeads):
"""
This class is used by Rotated Fast R-CNN to detect rotated boxes.
For now, it only supports box predictions but not mask or keypoints.
"""
@configurable
def __init__(self, **kwargs):
"""
NOTE: this interface is experimental.
"""
super().__init__(**kwargs)
assert (
not self.mask_on and not self.keypoint_on
), "Mask/Keypoints not supported in Rotated ROIHeads."
assert not self.train_on_pred_boxes, "train_on_pred_boxes not implemented for RROIHeads!"
@classmethod
def _init_box_head(cls, cfg, input_shape):
# fmt: off
in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features)
sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
# fmt: on
assert pooler_type in ["ROIAlignRotated"], pooler_type
# assume all channel counts are equal
in_channels = [input_shape[f].channels for f in in_features][0]
box_pooler = ROIPooler(
output_size=pooler_resolution,
scales=pooler_scales,
sampling_ratio=sampling_ratio,
pooler_type=pooler_type,
)
box_head = build_box_head(
cfg, ShapeSpec(channels=in_channels, height=pooler_resolution, width=pooler_resolution)
)
# This line is the only difference v.s. StandardROIHeads
box_predictor = RotatedFastRCNNOutputLayers(cfg, box_head.output_shape)
return {
"box_in_features": in_features,
"box_pooler": box_pooler,
"box_head": box_head,
"box_predictor": box_predictor,
}
@torch.no_grad()
def label_and_sample_proposals(self, proposals, targets):
"""
Prepare some proposals to be used to train the RROI heads.
It performs box matching between `proposals` and `targets`, and assigns
training labels to the proposals.
It returns `self.batch_size_per_image` random samples from proposals and groundtruth boxes,
with a fraction of positives that is no larger than `self.positive_sample_fraction.
Args:
See :meth:`StandardROIHeads.forward`
Returns:
list[Instances]: length `N` list of `Instances`s containing the proposals
sampled for training. Each `Instances` has the following fields:
- proposal_boxes: the rotated proposal boxes
- gt_boxes: the ground-truth rotated boxes that the proposal is assigned to
(this is only meaningful if the proposal has a label > 0; if label = 0
then the ground-truth box is random)
- gt_classes: the ground-truth classification lable for each proposal
"""
if self.proposal_append_gt:
proposals = add_ground_truth_to_proposals(targets, proposals)
proposals_with_gt = []
num_fg_samples = []
num_bg_samples = []
for proposals_per_image, targets_per_image in zip(proposals, targets):
has_gt = len(targets_per_image) > 0
match_quality_matrix = pairwise_iou_rotated(
targets_per_image.gt_boxes, proposals_per_image.proposal_boxes
)
matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix)
sampled_idxs, gt_classes = self._sample_proposals(
matched_idxs, matched_labels, targets_per_image.gt_classes
)
proposals_per_image = proposals_per_image[sampled_idxs]
proposals_per_image.gt_classes = gt_classes
if has_gt:
sampled_targets = matched_idxs[sampled_idxs]
proposals_per_image.gt_boxes = targets_per_image.gt_boxes[sampled_targets]
num_bg_samples.append((gt_classes == self.num_classes).sum().item())
num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1])
proposals_with_gt.append(proposals_per_image)
# Log the number of fg/bg samples that are selected for training ROI heads
storage = get_event_storage()
storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples))
storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples))
return proposals_with_gt
|