File size: 8,533 Bytes
500565b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright (c) Facebook, Inc. and its affiliates.


import itertools
import unittest
from contextlib import contextmanager
from copy import deepcopy
import torch

from detectron2.structures import BitMasks, Boxes, ImageList, Instances
from detectron2.utils.events import EventStorage
from detectron2.utils.testing import get_model_no_weights


@contextmanager
def typecheck_hook(model, *, in_dtype=None, out_dtype=None):
    """
    Check that the model must be called with the given input/output dtype
    """
    if not isinstance(in_dtype, set):
        in_dtype = {in_dtype}
    if not isinstance(out_dtype, set):
        out_dtype = {out_dtype}

    def flatten(x):
        if isinstance(x, torch.Tensor):
            return [x]
        if isinstance(x, (list, tuple)):
            return list(itertools.chain(*[flatten(t) for t in x]))
        if isinstance(x, dict):
            return flatten(list(x.values()))
        return []

    def hook(module, input, output):
        if in_dtype is not None:
            dtypes = {x.dtype for x in flatten(input)}
            assert (
                dtypes == in_dtype
            ), f"Expected input dtype of {type(module)} is {in_dtype}. Got {dtypes} instead!"

        if out_dtype is not None:
            dtypes = {x.dtype for x in flatten(output)}
            assert (
                dtypes == out_dtype
            ), f"Expected output dtype of {type(module)} is {out_dtype}. Got {dtypes} instead!"

    with model.register_forward_hook(hook):
        yield


def create_model_input(img, inst=None):
    if inst is not None:
        return {"image": img, "instances": inst}
    else:
        return {"image": img}


def get_empty_instance(h, w):
    inst = Instances((h, w))
    inst.gt_boxes = Boxes(torch.rand(0, 4))
    inst.gt_classes = torch.tensor([]).to(dtype=torch.int64)
    inst.gt_masks = BitMasks(torch.rand(0, h, w))
    return inst


def get_regular_bitmask_instances(h, w):
    inst = Instances((h, w))
    inst.gt_boxes = Boxes(torch.rand(3, 4))
    inst.gt_boxes.tensor[:, 2:] += inst.gt_boxes.tensor[:, :2]
    inst.gt_classes = torch.tensor([3, 4, 5]).to(dtype=torch.int64)
    inst.gt_masks = BitMasks((torch.rand(3, h, w) > 0.5))
    return inst


class InstanceModelE2ETest:
    def setUp(self):
        torch.manual_seed(43)
        self.model = get_model_no_weights(self.CONFIG_PATH)

    def _test_eval(self, input_sizes):
        inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes]
        self.model.eval()
        self.model(inputs)

    def _test_train(self, input_sizes, instances):
        assert len(input_sizes) == len(instances)
        inputs = [
            create_model_input(torch.rand(3, s[0], s[1]), inst)
            for s, inst in zip(input_sizes, instances)
        ]
        self.model.train()
        with EventStorage():
            losses = self.model(inputs)
            sum(losses.values()).backward()
            del losses

    def _inf_tensor(self, *shape):
        return 1.0 / torch.zeros(*shape, device=self.model.device)

    def _nan_tensor(self, *shape):
        return torch.zeros(*shape, device=self.model.device).fill_(float("nan"))

    def test_empty_data(self):
        instances = [get_empty_instance(200, 250), get_empty_instance(200, 249)]
        self._test_eval([(200, 250), (200, 249)])
        self._test_train([(200, 250), (200, 249)], instances)

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_eval_tocpu(self):
        model = deepcopy(self.model).cpu()
        model.eval()
        input_sizes = [(200, 250), (200, 249)]
        inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes]
        model(inputs)


class MaskRCNNE2ETest(InstanceModelE2ETest, unittest.TestCase):
    CONFIG_PATH = "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml"

    def test_half_empty_data(self):
        instances = [get_empty_instance(200, 250), get_regular_bitmask_instances(200, 249)]
        self._test_train([(200, 250), (200, 249)], instances)

    # This test is flaky because in some environment the output features are zero due to relu
    # def test_rpn_inf_nan_data(self):
    #     self.model.eval()
    #     for tensor in [self._inf_tensor, self._nan_tensor]:
    #         images = ImageList(tensor(1, 3, 512, 512), [(510, 510)])
    #         features = {
    #             "p2": tensor(1, 256, 256, 256),
    #             "p3": tensor(1, 256, 128, 128),
    #             "p4": tensor(1, 256, 64, 64),
    #             "p5": tensor(1, 256, 32, 32),
    #             "p6": tensor(1, 256, 16, 16),
    #         }
    #         props, _ = self.model.proposal_generator(images, features)
    #         self.assertEqual(len(props[0]), 0)

    def test_roiheads_inf_nan_data(self):
        self.model.eval()
        for tensor in [self._inf_tensor, self._nan_tensor]:
            images = ImageList(tensor(1, 3, 512, 512), [(510, 510)])
            features = {
                "p2": tensor(1, 256, 256, 256),
                "p3": tensor(1, 256, 128, 128),
                "p4": tensor(1, 256, 64, 64),
                "p5": tensor(1, 256, 32, 32),
                "p6": tensor(1, 256, 16, 16),
            }
            props = [Instances((510, 510))]
            props[0].proposal_boxes = Boxes([[10, 10, 20, 20]]).to(device=self.model.device)
            props[0].objectness_logits = torch.tensor([1.0]).reshape(1, 1)
            det, _ = self.model.roi_heads(images, features, props)
            self.assertEqual(len(det[0]), 0)

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_autocast(self):
        from torch.cuda.amp import autocast

        inputs = [{"image": torch.rand(3, 100, 100)}]
        self.model.eval()
        with autocast(), typecheck_hook(
            self.model.backbone, in_dtype=torch.float32, out_dtype=torch.float16
        ), typecheck_hook(
            self.model.roi_heads.box_predictor, in_dtype=torch.float16, out_dtype=torch.float16
        ):
            out = self.model.inference(inputs, do_postprocess=False)[0]
            self.assertEqual(out.pred_boxes.tensor.dtype, torch.float32)
            self.assertEqual(out.pred_masks.dtype, torch.float16)
            self.assertEqual(out.scores.dtype, torch.float32)  # scores comes from softmax


class RetinaNetE2ETest(InstanceModelE2ETest, unittest.TestCase):
    CONFIG_PATH = "COCO-Detection/retinanet_R_50_FPN_1x.yaml"

    def test_inf_nan_data(self):
        self.model.eval()
        self.model.score_threshold = -999999999
        for tensor in [self._inf_tensor, self._nan_tensor]:
            images = ImageList(tensor(1, 3, 512, 512), [(510, 510)])
            features = [
                tensor(1, 256, 128, 128),
                tensor(1, 256, 64, 64),
                tensor(1, 256, 32, 32),
                tensor(1, 256, 16, 16),
                tensor(1, 256, 8, 8),
            ]
            pred_logits, pred_anchor_deltas = self.model.head(features)
            pred_logits = [tensor(*x.shape) for x in pred_logits]
            pred_anchor_deltas = [tensor(*x.shape) for x in pred_anchor_deltas]
            det = self.model.forward_inference(images, features, [pred_logits, pred_anchor_deltas])
            # all predictions (if any) are infinite or nan
            if len(det[0]):
                self.assertTrue(torch.isfinite(det[0].pred_boxes.tensor).sum() == 0)

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_autocast(self):
        from torch.cuda.amp import autocast

        inputs = [{"image": torch.rand(3, 100, 100)}]
        self.model.eval()
        with autocast(), typecheck_hook(
            self.model.backbone, in_dtype=torch.float32, out_dtype=torch.float16
        ), typecheck_hook(self.model.head, in_dtype=torch.float16, out_dtype=torch.float16):
            out = self.model(inputs)[0]["instances"]
            self.assertEqual(out.pred_boxes.tensor.dtype, torch.float32)
            self.assertEqual(out.scores.dtype, torch.float16)


class SemSegE2ETest(unittest.TestCase):
    CONFIG_PATH = "Misc/semantic_R_50_FPN_1x.yaml"

    def setUp(self):
        torch.manual_seed(43)
        self.model = get_model_no_weights(self.CONFIG_PATH)

    def _test_eval(self, input_sizes):
        inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes]
        self.model.eval()
        self.model(inputs)

    def test_forward(self):
        self._test_eval([(200, 250), (200, 249)])