Spaces:
Running
Running
File size: 8,533 Bytes
500565b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# Copyright (c) Facebook, Inc. and its affiliates.
import itertools
import unittest
from contextlib import contextmanager
from copy import deepcopy
import torch
from detectron2.structures import BitMasks, Boxes, ImageList, Instances
from detectron2.utils.events import EventStorage
from detectron2.utils.testing import get_model_no_weights
@contextmanager
def typecheck_hook(model, *, in_dtype=None, out_dtype=None):
"""
Check that the model must be called with the given input/output dtype
"""
if not isinstance(in_dtype, set):
in_dtype = {in_dtype}
if not isinstance(out_dtype, set):
out_dtype = {out_dtype}
def flatten(x):
if isinstance(x, torch.Tensor):
return [x]
if isinstance(x, (list, tuple)):
return list(itertools.chain(*[flatten(t) for t in x]))
if isinstance(x, dict):
return flatten(list(x.values()))
return []
def hook(module, input, output):
if in_dtype is not None:
dtypes = {x.dtype for x in flatten(input)}
assert (
dtypes == in_dtype
), f"Expected input dtype of {type(module)} is {in_dtype}. Got {dtypes} instead!"
if out_dtype is not None:
dtypes = {x.dtype for x in flatten(output)}
assert (
dtypes == out_dtype
), f"Expected output dtype of {type(module)} is {out_dtype}. Got {dtypes} instead!"
with model.register_forward_hook(hook):
yield
def create_model_input(img, inst=None):
if inst is not None:
return {"image": img, "instances": inst}
else:
return {"image": img}
def get_empty_instance(h, w):
inst = Instances((h, w))
inst.gt_boxes = Boxes(torch.rand(0, 4))
inst.gt_classes = torch.tensor([]).to(dtype=torch.int64)
inst.gt_masks = BitMasks(torch.rand(0, h, w))
return inst
def get_regular_bitmask_instances(h, w):
inst = Instances((h, w))
inst.gt_boxes = Boxes(torch.rand(3, 4))
inst.gt_boxes.tensor[:, 2:] += inst.gt_boxes.tensor[:, :2]
inst.gt_classes = torch.tensor([3, 4, 5]).to(dtype=torch.int64)
inst.gt_masks = BitMasks((torch.rand(3, h, w) > 0.5))
return inst
class InstanceModelE2ETest:
def setUp(self):
torch.manual_seed(43)
self.model = get_model_no_weights(self.CONFIG_PATH)
def _test_eval(self, input_sizes):
inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes]
self.model.eval()
self.model(inputs)
def _test_train(self, input_sizes, instances):
assert len(input_sizes) == len(instances)
inputs = [
create_model_input(torch.rand(3, s[0], s[1]), inst)
for s, inst in zip(input_sizes, instances)
]
self.model.train()
with EventStorage():
losses = self.model(inputs)
sum(losses.values()).backward()
del losses
def _inf_tensor(self, *shape):
return 1.0 / torch.zeros(*shape, device=self.model.device)
def _nan_tensor(self, *shape):
return torch.zeros(*shape, device=self.model.device).fill_(float("nan"))
def test_empty_data(self):
instances = [get_empty_instance(200, 250), get_empty_instance(200, 249)]
self._test_eval([(200, 250), (200, 249)])
self._test_train([(200, 250), (200, 249)], instances)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
def test_eval_tocpu(self):
model = deepcopy(self.model).cpu()
model.eval()
input_sizes = [(200, 250), (200, 249)]
inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes]
model(inputs)
class MaskRCNNE2ETest(InstanceModelE2ETest, unittest.TestCase):
CONFIG_PATH = "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml"
def test_half_empty_data(self):
instances = [get_empty_instance(200, 250), get_regular_bitmask_instances(200, 249)]
self._test_train([(200, 250), (200, 249)], instances)
# This test is flaky because in some environment the output features are zero due to relu
# def test_rpn_inf_nan_data(self):
# self.model.eval()
# for tensor in [self._inf_tensor, self._nan_tensor]:
# images = ImageList(tensor(1, 3, 512, 512), [(510, 510)])
# features = {
# "p2": tensor(1, 256, 256, 256),
# "p3": tensor(1, 256, 128, 128),
# "p4": tensor(1, 256, 64, 64),
# "p5": tensor(1, 256, 32, 32),
# "p6": tensor(1, 256, 16, 16),
# }
# props, _ = self.model.proposal_generator(images, features)
# self.assertEqual(len(props[0]), 0)
def test_roiheads_inf_nan_data(self):
self.model.eval()
for tensor in [self._inf_tensor, self._nan_tensor]:
images = ImageList(tensor(1, 3, 512, 512), [(510, 510)])
features = {
"p2": tensor(1, 256, 256, 256),
"p3": tensor(1, 256, 128, 128),
"p4": tensor(1, 256, 64, 64),
"p5": tensor(1, 256, 32, 32),
"p6": tensor(1, 256, 16, 16),
}
props = [Instances((510, 510))]
props[0].proposal_boxes = Boxes([[10, 10, 20, 20]]).to(device=self.model.device)
props[0].objectness_logits = torch.tensor([1.0]).reshape(1, 1)
det, _ = self.model.roi_heads(images, features, props)
self.assertEqual(len(det[0]), 0)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
def test_autocast(self):
from torch.cuda.amp import autocast
inputs = [{"image": torch.rand(3, 100, 100)}]
self.model.eval()
with autocast(), typecheck_hook(
self.model.backbone, in_dtype=torch.float32, out_dtype=torch.float16
), typecheck_hook(
self.model.roi_heads.box_predictor, in_dtype=torch.float16, out_dtype=torch.float16
):
out = self.model.inference(inputs, do_postprocess=False)[0]
self.assertEqual(out.pred_boxes.tensor.dtype, torch.float32)
self.assertEqual(out.pred_masks.dtype, torch.float16)
self.assertEqual(out.scores.dtype, torch.float32) # scores comes from softmax
class RetinaNetE2ETest(InstanceModelE2ETest, unittest.TestCase):
CONFIG_PATH = "COCO-Detection/retinanet_R_50_FPN_1x.yaml"
def test_inf_nan_data(self):
self.model.eval()
self.model.score_threshold = -999999999
for tensor in [self._inf_tensor, self._nan_tensor]:
images = ImageList(tensor(1, 3, 512, 512), [(510, 510)])
features = [
tensor(1, 256, 128, 128),
tensor(1, 256, 64, 64),
tensor(1, 256, 32, 32),
tensor(1, 256, 16, 16),
tensor(1, 256, 8, 8),
]
pred_logits, pred_anchor_deltas = self.model.head(features)
pred_logits = [tensor(*x.shape) for x in pred_logits]
pred_anchor_deltas = [tensor(*x.shape) for x in pred_anchor_deltas]
det = self.model.forward_inference(images, features, [pred_logits, pred_anchor_deltas])
# all predictions (if any) are infinite or nan
if len(det[0]):
self.assertTrue(torch.isfinite(det[0].pred_boxes.tensor).sum() == 0)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
def test_autocast(self):
from torch.cuda.amp import autocast
inputs = [{"image": torch.rand(3, 100, 100)}]
self.model.eval()
with autocast(), typecheck_hook(
self.model.backbone, in_dtype=torch.float32, out_dtype=torch.float16
), typecheck_hook(self.model.head, in_dtype=torch.float16, out_dtype=torch.float16):
out = self.model(inputs)[0]["instances"]
self.assertEqual(out.pred_boxes.tensor.dtype, torch.float32)
self.assertEqual(out.scores.dtype, torch.float16)
class SemSegE2ETest(unittest.TestCase):
CONFIG_PATH = "Misc/semantic_R_50_FPN_1x.yaml"
def setUp(self):
torch.manual_seed(43)
self.model = get_model_no_weights(self.CONFIG_PATH)
def _test_eval(self, input_sizes):
inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes]
self.model.eval()
self.model(inputs)
def test_forward(self):
self._test_eval([(200, 250), (200, 249)])
|