Spaces:
Running
Running
File size: 1,705 Bytes
500565b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
# Copyright (c) Facebook, Inc. and its affiliates.
import unittest
from collections import OrderedDict
import torch
from torch import nn
from detectron2.checkpoint.c2_model_loading import align_and_update_state_dicts
from detectron2.utils.logger import setup_logger
class TestCheckpointer(unittest.TestCase):
def setUp(self):
setup_logger()
def create_complex_model(self):
m = nn.Module()
m.block1 = nn.Module()
m.block1.layer1 = nn.Linear(2, 3)
m.layer2 = nn.Linear(3, 2)
m.res = nn.Module()
m.res.layer2 = nn.Linear(3, 2)
state_dict = OrderedDict()
state_dict["layer1.weight"] = torch.rand(3, 2)
state_dict["layer1.bias"] = torch.rand(3)
state_dict["layer2.weight"] = torch.rand(2, 3)
state_dict["layer2.bias"] = torch.rand(2)
state_dict["res.layer2.weight"] = torch.rand(2, 3)
state_dict["res.layer2.bias"] = torch.rand(2)
return m, state_dict
def test_complex_model_loaded(self):
for add_data_parallel in [False, True]:
model, state_dict = self.create_complex_model()
if add_data_parallel:
model = nn.DataParallel(model)
model_sd = model.state_dict()
sd_to_load = align_and_update_state_dicts(model_sd, state_dict)
model.load_state_dict(sd_to_load)
for loaded, stored in zip(model_sd.values(), state_dict.values()):
# different tensor references
self.assertFalse(id(loaded) == id(stored))
# same content
self.assertTrue(loaded.to(stored).equal(stored))
if __name__ == "__main__":
unittest.main()
|