File size: 2,095 Bytes
500565b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright (c) Facebook, Inc. and its affiliates.


import unittest
import torch
from torch import nn

from detectron2.utils.analysis import find_unused_parameters, flop_count_operators, parameter_count
from detectron2.utils.testing import get_model_no_weights


class RetinaNetTest(unittest.TestCase):
    def setUp(self):
        self.model = get_model_no_weights("COCO-Detection/retinanet_R_50_FPN_1x.yaml")

    def test_flop(self):
        # RetinaNet supports flop-counting with random inputs
        inputs = [{"image": torch.rand(3, 800, 800), "test_unused": "abcd"}]
        res = flop_count_operators(self.model, inputs)
        self.assertTrue(int(res["conv"]), 146)  # 146B flops

    def test_param_count(self):
        res = parameter_count(self.model)
        self.assertTrue(res[""], 37915572)
        self.assertTrue(res["backbone"], 31452352)


class FasterRCNNTest(unittest.TestCase):
    def setUp(self):
        self.model = get_model_no_weights("COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml")

    def test_flop(self):
        # Faster R-CNN supports flop-counting with random inputs
        inputs = [{"image": torch.rand(3, 800, 800)}]
        res = flop_count_operators(self.model, inputs)

        # This only checks flops for backbone & proposal generator
        # Flops for box head is not conv, and depends on #proposals, which is
        # almost 0 for random inputs.
        self.assertTrue(int(res["conv"]), 117)

    def test_param_count(self):
        res = parameter_count(self.model)
        self.assertTrue(res[""], 41699936)
        self.assertTrue(res["backbone"], 26799296)


class UnusedParamTest(unittest.TestCase):
    def test_unused(self):
        class TestMod(nn.Module):
            def __init__(self):
                super().__init__()
                self.fc1 = nn.Linear(10, 10)
                self.t = nn.Linear(10, 10)

            def forward(self, x):
                return self.fc1(x).mean()

        m = TestMod()
        ret = find_unused_parameters(m, torch.randn(10, 10))
        self.assertEqual(set(ret), {"t.weight", "t.bias"})