Spaces:
Sleeping
Sleeping
File size: 11,155 Bytes
500565b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# Copyright (c) Facebook, Inc. and its affiliates.
import torch
import torch.distributed as dist
from fvcore.nn.distributed import differentiable_all_reduce
from torch import nn
from torch.nn import functional as F
from detectron2.utils import comm, env
from .wrappers import BatchNorm2d
class FrozenBatchNorm2d(nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
It contains non-trainable buffers called
"weight" and "bias", "running_mean", "running_var",
initialized to perform identity transformation.
The pre-trained backbone models from Caffe2 only contain "weight" and "bias",
which are computed from the original four parameters of BN.
The affine transform `x * weight + bias` will perform the equivalent
computation of `(x - running_mean) / sqrt(running_var) * weight + bias`.
When loading a backbone model from Caffe2, "running_mean" and "running_var"
will be left unchanged as identity transformation.
Other pre-trained backbone models may contain all 4 parameters.
The forward is implemented by `F.batch_norm(..., training=False)`.
"""
_version = 3
def __init__(self, num_features, eps=1e-5):
super().__init__()
self.num_features = num_features
self.eps = eps
self.register_buffer("weight", torch.ones(num_features))
self.register_buffer("bias", torch.zeros(num_features))
self.register_buffer("running_mean", torch.zeros(num_features))
self.register_buffer("running_var", torch.ones(num_features) - eps)
def forward(self, x):
if x.requires_grad:
# When gradients are needed, F.batch_norm will use extra memory
# because its backward op computes gradients for weight/bias as well.
scale = self.weight * (self.running_var + self.eps).rsqrt()
bias = self.bias - self.running_mean * scale
scale = scale.reshape(1, -1, 1, 1)
bias = bias.reshape(1, -1, 1, 1)
out_dtype = x.dtype # may be half
return x * scale.to(out_dtype) + bias.to(out_dtype)
else:
# When gradients are not needed, F.batch_norm is a single fused op
# and provide more optimization opportunities.
return F.batch_norm(
x,
self.running_mean,
self.running_var,
self.weight,
self.bias,
training=False,
eps=self.eps,
)
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
version = local_metadata.get("version", None)
if version is None or version < 2:
# No running_mean/var in early versions
# This will silent the warnings
if prefix + "running_mean" not in state_dict:
state_dict[prefix + "running_mean"] = torch.zeros_like(self.running_mean)
if prefix + "running_var" not in state_dict:
state_dict[prefix + "running_var"] = torch.ones_like(self.running_var)
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def __repr__(self):
return "FrozenBatchNorm2d(num_features={}, eps={})".format(self.num_features, self.eps)
@classmethod
def convert_frozen_batchnorm(cls, module):
"""
Convert all BatchNorm/SyncBatchNorm in module into FrozenBatchNorm.
Args:
module (torch.nn.Module):
Returns:
If module is BatchNorm/SyncBatchNorm, returns a new module.
Otherwise, in-place convert module and return it.
Similar to convert_sync_batchnorm in
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/batchnorm.py
"""
bn_module = nn.modules.batchnorm
bn_module = (bn_module.BatchNorm2d, bn_module.SyncBatchNorm)
res = module
if isinstance(module, bn_module):
res = cls(module.num_features)
if module.affine:
res.weight.data = module.weight.data.clone().detach()
res.bias.data = module.bias.data.clone().detach()
res.running_mean.data = module.running_mean.data
res.running_var.data = module.running_var.data
res.eps = module.eps
else:
for name, child in module.named_children():
new_child = cls.convert_frozen_batchnorm(child)
if new_child is not child:
res.add_module(name, new_child)
return res
def get_norm(norm, out_channels):
"""
Args:
norm (str or callable): either one of BN, SyncBN, FrozenBN, GN;
or a callable that takes a channel number and returns
the normalization layer as a nn.Module.
Returns:
nn.Module or None: the normalization layer
"""
if norm is None:
return None
if isinstance(norm, str):
if len(norm) == 0:
return None
norm = {
"BN": BatchNorm2d,
# Fixed in https://github.com/pytorch/pytorch/pull/36382
"SyncBN": NaiveSyncBatchNorm if env.TORCH_VERSION <= (1, 5) else nn.SyncBatchNorm,
"FrozenBN": FrozenBatchNorm2d,
"GN": lambda channels: nn.GroupNorm(32, channels),
# for debugging:
"nnSyncBN": nn.SyncBatchNorm,
"naiveSyncBN": NaiveSyncBatchNorm,
# expose stats_mode N as an option to caller, required for zero-len inputs
"naiveSyncBN_N": lambda channels: NaiveSyncBatchNorm(channels, stats_mode="N"),
}[norm]
return norm(out_channels)
class NaiveSyncBatchNorm(BatchNorm2d):
"""
In PyTorch<=1.5, ``nn.SyncBatchNorm`` has incorrect gradient
when the batch size on each worker is different.
(e.g., when scale augmentation is used, or when it is applied to mask head).
This is a slower but correct alternative to `nn.SyncBatchNorm`.
Note:
There isn't a single definition of Sync BatchNorm.
When ``stats_mode==""``, this module computes overall statistics by using
statistics of each worker with equal weight. The result is true statistics
of all samples (as if they are all on one worker) only when all workers
have the same (N, H, W). This mode does not support inputs with zero batch size.
When ``stats_mode=="N"``, this module computes overall statistics by weighting
the statistics of each worker by their ``N``. The result is true statistics
of all samples (as if they are all on one worker) only when all workers
have the same (H, W). It is slower than ``stats_mode==""``.
Even though the result of this module may not be the true statistics of all samples,
it may still be reasonable because it might be preferrable to assign equal weights
to all workers, regardless of their (H, W) dimension, instead of putting larger weight
on larger images. From preliminary experiments, little difference is found between such
a simplified implementation and an accurate computation of overall mean & variance.
"""
def __init__(self, *args, stats_mode="", **kwargs):
super().__init__(*args, **kwargs)
assert stats_mode in ["", "N"]
self._stats_mode = stats_mode
def forward(self, input):
if comm.get_world_size() == 1 or not self.training:
return super().forward(input)
B, C = input.shape[0], input.shape[1]
half_input = input.dtype == torch.float16
if half_input:
# fp16 does not have good enough numerics for the reduction here
input = input.float()
mean = torch.mean(input, dim=[0, 2, 3])
meansqr = torch.mean(input * input, dim=[0, 2, 3])
if self._stats_mode == "":
assert B > 0, 'SyncBatchNorm(stats_mode="") does not support zero batch size.'
vec = torch.cat([mean, meansqr], dim=0)
vec = differentiable_all_reduce(vec) * (1.0 / dist.get_world_size())
mean, meansqr = torch.split(vec, C)
momentum = self.momentum
else:
if B == 0:
vec = torch.zeros([2 * C + 1], device=mean.device, dtype=mean.dtype)
vec = vec + input.sum() # make sure there is gradient w.r.t input
else:
vec = torch.cat(
[mean, meansqr, torch.ones([1], device=mean.device, dtype=mean.dtype)], dim=0
)
vec = differentiable_all_reduce(vec * B)
total_batch = vec[-1].detach()
momentum = total_batch.clamp(max=1) * self.momentum # no update if total_batch is 0
mean, meansqr, _ = torch.split(vec / total_batch.clamp(min=1), C) # avoid div-by-zero
var = meansqr - mean * mean
invstd = torch.rsqrt(var + self.eps)
scale = self.weight * invstd
bias = self.bias - mean * scale
scale = scale.reshape(1, -1, 1, 1)
bias = bias.reshape(1, -1, 1, 1)
self.running_mean += momentum * (mean.detach() - self.running_mean)
self.running_var += momentum * (var.detach() - self.running_var)
ret = input * scale + bias
if half_input:
ret = ret.half()
return ret
class CycleBatchNormList(nn.ModuleList):
"""
Implement domain-specific BatchNorm by cycling.
When a BatchNorm layer is used for multiple input domains or input
features, it might need to maintain a separate test-time statistics
for each domain. See Sec 5.2 in :paper:`rethinking-batchnorm`.
This module implements it by using N separate BN layers
and it cycles through them every time a forward() is called.
NOTE: The caller of this module MUST guarantee to always call
this module by multiple of N times. Otherwise its test-time statistics
will be incorrect.
"""
def __init__(self, length: int, bn_class=nn.BatchNorm2d, **kwargs):
"""
Args:
length: number of BatchNorm layers to cycle.
bn_class: the BatchNorm class to use
kwargs: arguments of the BatchNorm class, such as num_features.
"""
self._affine = kwargs.pop("affine", True)
super().__init__([bn_class(**kwargs, affine=False) for k in range(length)])
if self._affine:
# shared affine, domain-specific BN
channels = self[0].num_features
self.weight = nn.Parameter(torch.ones(channels))
self.bias = nn.Parameter(torch.zeros(channels))
self._pos = 0
def forward(self, x):
ret = self[self._pos](x)
self._pos = (self._pos + 1) % len(self)
if self._affine:
w = self.weight.reshape(1, -1, 1, 1)
b = self.bias.reshape(1, -1, 1, 1)
return ret * w + b
else:
return ret
def extra_repr(self):
return f"affine={self._affine}"
|