File size: 4,635 Bytes
500565b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.

"""
DeepLab Training Script.

This script is a simplified version of the training script in detectron2/tools.
"""

import os
import torch

import detectron2.data.transforms as T
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import DatasetMapper, MetadataCatalog, build_detection_train_loader
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
from detectron2.evaluation import CityscapesSemSegEvaluator, DatasetEvaluators, SemSegEvaluator
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler


def build_sem_seg_train_aug(cfg):
    augs = [
        T.ResizeShortestEdge(
            cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
        )
    ]
    if cfg.INPUT.CROP.ENABLED:
        augs.append(
            T.RandomCrop_CategoryAreaConstraint(
                cfg.INPUT.CROP.TYPE,
                cfg.INPUT.CROP.SIZE,
                cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA,
                cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
            )
        )
    augs.append(T.RandomFlip())
    return augs


class Trainer(DefaultTrainer):
    """
    We use the "DefaultTrainer" which contains a number pre-defined logic for
    standard training workflow. They may not work for you, especially if you
    are working on a new research project. In that case you can use the cleaner
    "SimpleTrainer", or write your own training loop.
    """

    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        """
        Create evaluator(s) for a given dataset.
        This uses the special metadata "evaluator_type" associated with each builtin dataset.
        For your own dataset, you can simply create an evaluator manually in your
        script and do not have to worry about the hacky if-else logic here.
        """
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
        evaluator_list = []
        evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
        if evaluator_type == "sem_seg":
            return SemSegEvaluator(
                dataset_name,
                distributed=True,
                output_dir=output_folder,
            )
        if evaluator_type == "cityscapes_sem_seg":
            assert (
                torch.cuda.device_count() > comm.get_rank()
            ), "CityscapesEvaluator currently do not work with multiple machines."
            return CityscapesSemSegEvaluator(dataset_name)
        if len(evaluator_list) == 0:
            raise NotImplementedError(
                "no Evaluator for the dataset {} with the type {}".format(
                    dataset_name, evaluator_type
                )
            )
        if len(evaluator_list) == 1:
            return evaluator_list[0]
        return DatasetEvaluators(evaluator_list)

    @classmethod
    def build_train_loader(cls, cfg):
        if "SemanticSegmentor" in cfg.MODEL.META_ARCHITECTURE:
            mapper = DatasetMapper(cfg, is_train=True, augmentations=build_sem_seg_train_aug(cfg))
        else:
            mapper = None
        return build_detection_train_loader(cfg, mapper=mapper)

    @classmethod
    def build_lr_scheduler(cls, cfg, optimizer):
        """
        It now calls :func:`detectron2.solver.build_lr_scheduler`.
        Overwrite it if you'd like a different scheduler.
        """
        return build_lr_scheduler(cfg, optimizer)


def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    add_deeplab_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    default_setup(cfg, args)
    return cfg


def main(args):
    cfg = setup(args)

    if args.eval_only:
        model = Trainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        res = Trainer.test(cfg, model)
        return res

    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    return trainer.train()


if __name__ == "__main__":
    args = default_argument_parser().parse_args()
    print("Command Line Args:", args)
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )