Spaces:
Sleeping
Sleeping
File size: 7,636 Bytes
500565b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import unittest
import torch
from detectron2.layers import DeformConv, ModulatedDeformConv
from detectron2.utils.env import TORCH_VERSION
@unittest.skipIf(
TORCH_VERSION == (1, 8) and torch.cuda.is_available(),
"This test fails under cuda11 + torch1.8.",
)
class DeformableTest(unittest.TestCase):
@unittest.skipIf(not torch.cuda.is_available(), "Deformable not supported for cpu")
def test_forward_output(self):
device = torch.device("cuda")
N, C, H, W = shape = 1, 1, 5, 5
kernel_size = 3
padding = 1
inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape).to(device)
"""
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24
"""
offset_channels = kernel_size * kernel_size * 2
offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32).to(device)
# Test DCN v1
deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device)
deform.weight = torch.nn.Parameter(torch.ones_like(deform.weight))
output = deform(inputs, offset)
output = output.detach().cpu().numpy()
deform_results = np.array(
[
[30, 41.25, 48.75, 45, 28.75],
[62.25, 81, 90, 80.25, 50.25],
[99.75, 126, 135, 117.75, 72.75],
[105, 131.25, 138.75, 120, 73.75],
[71.75, 89.25, 93.75, 80.75, 49.5],
]
)
self.assertTrue(np.allclose(output.flatten(), deform_results.flatten()))
# Test DCN v2
mask_channels = kernel_size * kernel_size
mask = torch.full((N, mask_channels, H, W), 0.5, dtype=torch.float32).to(device)
modulate_deform = ModulatedDeformConv(C, C, kernel_size, padding=padding, bias=False).to(
device
)
modulate_deform.weight = deform.weight
output = modulate_deform(inputs, offset, mask)
output = output.detach().cpu().numpy()
self.assertTrue(np.allclose(output.flatten(), deform_results.flatten() * 0.5))
def test_forward_output_on_cpu(self):
device = torch.device("cpu")
N, C, H, W = shape = 1, 1, 5, 5
kernel_size = 3
padding = 1
inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape).to(device)
offset_channels = kernel_size * kernel_size * 2
offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32).to(device)
# Test DCN v1 on cpu
deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device)
deform.weight = torch.nn.Parameter(torch.ones_like(deform.weight))
output = deform(inputs, offset)
output = output.detach().cpu().numpy()
deform_results = np.array(
[
[30, 41.25, 48.75, 45, 28.75],
[62.25, 81, 90, 80.25, 50.25],
[99.75, 126, 135, 117.75, 72.75],
[105, 131.25, 138.75, 120, 73.75],
[71.75, 89.25, 93.75, 80.75, 49.5],
]
)
self.assertTrue(np.allclose(output.flatten(), deform_results.flatten()))
@unittest.skipIf(not torch.cuda.is_available(), "This test requires gpu access")
def test_forward_output_on_cpu_equals_output_on_gpu(self):
N, C, H, W = shape = 2, 4, 10, 10
kernel_size = 3
padding = 1
for groups in [1, 2]:
inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape)
offset_channels = kernel_size * kernel_size * 2
offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32)
deform_gpu = DeformConv(
C, C, kernel_size=kernel_size, padding=padding, groups=groups
).to("cuda")
deform_gpu.weight = torch.nn.Parameter(torch.ones_like(deform_gpu.weight))
output_gpu = deform_gpu(inputs.to("cuda"), offset.to("cuda")).detach().cpu().numpy()
deform_cpu = DeformConv(
C, C, kernel_size=kernel_size, padding=padding, groups=groups
).to("cpu")
deform_cpu.weight = torch.nn.Parameter(torch.ones_like(deform_cpu.weight))
output_cpu = deform_cpu(inputs.to("cpu"), offset.to("cpu")).detach().numpy()
self.assertTrue(np.allclose(output_gpu.flatten(), output_cpu.flatten()))
@unittest.skipIf(not torch.cuda.is_available(), "Deformable not supported for cpu")
def test_small_input(self):
device = torch.device("cuda")
for kernel_size in [3, 5]:
padding = kernel_size // 2
N, C, H, W = shape = (1, 1, kernel_size - 1, kernel_size - 1)
inputs = torch.rand(shape).to(device) # input size is smaller than kernel size
offset_channels = kernel_size * kernel_size * 2
offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device)
deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device)
output = deform(inputs, offset)
self.assertTrue(output.shape == inputs.shape)
mask_channels = kernel_size * kernel_size
mask = torch.ones((N, mask_channels, H, W), dtype=torch.float32).to(device)
modulate_deform = ModulatedDeformConv(
C, C, kernel_size, padding=padding, bias=False
).to(device)
output = modulate_deform(inputs, offset, mask)
self.assertTrue(output.shape == inputs.shape)
@unittest.skipIf(not torch.cuda.is_available(), "Deformable not supported for cpu")
def test_raise_exception(self):
device = torch.device("cuda")
N, C, H, W = shape = 1, 1, 3, 3
kernel_size = 3
padding = 1
inputs = torch.rand(shape, dtype=torch.float32).to(device)
offset_channels = kernel_size * kernel_size # This is wrong channels for offset
offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device)
deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device)
self.assertRaises(RuntimeError, deform, inputs, offset)
offset_channels = kernel_size * kernel_size * 2
offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device)
mask_channels = kernel_size * kernel_size * 2 # This is wrong channels for mask
mask = torch.ones((N, mask_channels, H, W), dtype=torch.float32).to(device)
modulate_deform = ModulatedDeformConv(C, C, kernel_size, padding=padding, bias=False).to(
device
)
self.assertRaises(RuntimeError, modulate_deform, inputs, offset, mask)
def test_repr(self):
module = DeformConv(3, 10, kernel_size=3, padding=1, deformable_groups=2)
correct_string = (
"DeformConv(in_channels=3, out_channels=10, kernel_size=(3, 3), "
"stride=(1, 1), padding=(1, 1), dilation=(1, 1), "
"groups=1, deformable_groups=2, bias=False)"
)
self.assertEqual(repr(module), correct_string)
module = ModulatedDeformConv(3, 10, kernel_size=3, padding=1, deformable_groups=2)
correct_string = (
"ModulatedDeformConv(in_channels=3, out_channels=10, kernel_size=(3, 3), "
"stride=1, padding=1, dilation=1, groups=1, deformable_groups=2, bias=True)"
)
self.assertEqual(repr(module), correct_string)
if __name__ == "__main__":
unittest.main()
|