Spaces:
Running
Running
File size: 13,989 Bytes
500565b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import unittest
from copy import deepcopy
import torch
from torch import nn
from detectron2 import model_zoo
from detectron2.config import get_cfg
from detectron2.export.torchscript_patch import (
freeze_training_mode,
patch_builtin_len,
patch_instances,
)
from detectron2.layers import ShapeSpec
from detectron2.modeling.proposal_generator.build import build_proposal_generator
from detectron2.modeling.roi_heads import (
FastRCNNConvFCHead,
KRCNNConvDeconvUpsampleHead,
MaskRCNNConvUpsampleHead,
StandardROIHeads,
build_roi_heads,
)
from detectron2.projects import point_rend
from detectron2.structures import BitMasks, Boxes, ImageList, Instances, RotatedBoxes
from detectron2.utils.events import EventStorage
from detectron2.utils.testing import assert_instances_allclose, random_boxes
logger = logging.getLogger(__name__)
"""
Make sure the losses of ROIHeads/RPN do not change, to avoid
breaking the forward logic by mistake.
This relies on assumption that pytorch's RNG is stable.
"""
class ROIHeadsTest(unittest.TestCase):
def test_roi_heads(self):
torch.manual_seed(121)
cfg = get_cfg()
cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2"
cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5)
cfg.MODEL.MASK_ON = True
num_images = 2
images_tensor = torch.rand(num_images, 20, 30)
image_sizes = [(10, 10), (20, 30)]
images = ImageList(images_tensor, image_sizes)
num_channels = 1024
features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)}
image_shape = (15, 15)
gt_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32)
gt_instance0 = Instances(image_shape)
gt_instance0.gt_boxes = Boxes(gt_boxes0)
gt_instance0.gt_classes = torch.tensor([2, 1])
gt_instance0.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5)
gt_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]], dtype=torch.float32)
gt_instance1 = Instances(image_shape)
gt_instance1.gt_boxes = Boxes(gt_boxes1)
gt_instance1.gt_classes = torch.tensor([1, 2])
gt_instance1.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5)
gt_instances = [gt_instance0, gt_instance1]
proposal_generator = build_proposal_generator(cfg, feature_shape)
roi_heads = StandardROIHeads(cfg, feature_shape)
with EventStorage(): # capture events in a new storage to discard them
proposals, proposal_losses = proposal_generator(images, features, gt_instances)
_, detector_losses = roi_heads(images, features, proposals, gt_instances)
detector_losses.update(proposal_losses)
expected_losses = {
"loss_cls": 4.5253729820251465,
"loss_box_reg": 0.009785720147192478,
"loss_mask": 0.693184494972229,
"loss_rpn_cls": 0.08186662942171097,
"loss_rpn_loc": 0.1104838103055954,
}
succ = all(
torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0)))
for name in detector_losses.keys()
)
self.assertTrue(
succ,
"Losses has changed! New losses: {}".format(
{k: v.item() for k, v in detector_losses.items()}
),
)
def test_rroi_heads(self):
torch.manual_seed(121)
cfg = get_cfg()
cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN"
cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator"
cfg.MODEL.ROI_HEADS.NAME = "RROIHeads"
cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1)
cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead"
cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignRotated"
cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5, 1)
num_images = 2
images_tensor = torch.rand(num_images, 20, 30)
image_sizes = [(10, 10), (20, 30)]
images = ImageList(images_tensor, image_sizes)
num_channels = 1024
features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)}
image_shape = (15, 15)
gt_boxes0 = torch.tensor([[2, 2, 2, 2, 30], [4, 4, 4, 4, 0]], dtype=torch.float32)
gt_instance0 = Instances(image_shape)
gt_instance0.gt_boxes = RotatedBoxes(gt_boxes0)
gt_instance0.gt_classes = torch.tensor([2, 1])
gt_boxes1 = torch.tensor([[1.5, 5.5, 1, 3, 0], [8.5, 4, 3, 2, -50]], dtype=torch.float32)
gt_instance1 = Instances(image_shape)
gt_instance1.gt_boxes = RotatedBoxes(gt_boxes1)
gt_instance1.gt_classes = torch.tensor([1, 2])
gt_instances = [gt_instance0, gt_instance1]
proposal_generator = build_proposal_generator(cfg, feature_shape)
roi_heads = build_roi_heads(cfg, feature_shape)
with EventStorage(): # capture events in a new storage to discard them
proposals, proposal_losses = proposal_generator(images, features, gt_instances)
_, detector_losses = roi_heads(images, features, proposals, gt_instances)
detector_losses.update(proposal_losses)
expected_losses = {
"loss_cls": 4.365657806396484,
"loss_box_reg": 0.0015851043863222003,
"loss_rpn_cls": 0.2427729219198227,
"loss_rpn_loc": 0.3646621108055115,
}
succ = all(
torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0)))
for name in detector_losses.keys()
)
self.assertTrue(
succ,
"Losses has changed! New losses: {}".format(
{k: v.item() for k, v in detector_losses.items()}
),
)
def test_box_head_scriptability(self):
input_shape = ShapeSpec(channels=1024, height=14, width=14)
box_features = torch.randn(4, 1024, 14, 14)
box_head = FastRCNNConvFCHead(
input_shape, conv_dims=[512, 512], fc_dims=[1024, 1024]
).eval()
script_box_head = torch.jit.script(box_head)
origin_output = box_head(box_features)
script_output = script_box_head(box_features)
self.assertTrue(torch.equal(origin_output, script_output))
def test_mask_head_scriptability(self):
input_shape = ShapeSpec(channels=1024)
mask_features = torch.randn(4, 1024, 14, 14)
image_shapes = [(10, 10), (15, 15)]
pred_instance0 = Instances(image_shapes[0])
pred_classes0 = torch.tensor([1, 2, 3], dtype=torch.int64)
pred_instance0.pred_classes = pred_classes0
pred_instance1 = Instances(image_shapes[1])
pred_classes1 = torch.tensor([4], dtype=torch.int64)
pred_instance1.pred_classes = pred_classes1
mask_head = MaskRCNNConvUpsampleHead(
input_shape, num_classes=80, conv_dims=[256, 256]
).eval()
# pred_instance will be in-place changed during the inference
# process of `MaskRCNNConvUpsampleHead`
origin_outputs = mask_head(mask_features, deepcopy([pred_instance0, pred_instance1]))
fields = {"pred_masks": torch.Tensor, "pred_classes": torch.Tensor}
with freeze_training_mode(mask_head), patch_instances(fields) as NewInstances:
sciript_mask_head = torch.jit.script(mask_head)
pred_instance0 = NewInstances.from_instances(pred_instance0)
pred_instance1 = NewInstances.from_instances(pred_instance1)
script_outputs = sciript_mask_head(mask_features, [pred_instance0, pred_instance1])
for origin_ins, script_ins in zip(origin_outputs, script_outputs):
assert_instances_allclose(origin_ins, script_ins, rtol=0)
def test_keypoint_head_scriptability(self):
input_shape = ShapeSpec(channels=1024, height=14, width=14)
keypoint_features = torch.randn(4, 1024, 14, 14)
image_shapes = [(10, 10), (15, 15)]
pred_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6], [1, 5, 2, 8]], dtype=torch.float32)
pred_instance0 = Instances(image_shapes[0])
pred_instance0.pred_boxes = Boxes(pred_boxes0)
pred_boxes1 = torch.tensor([[7, 3, 10, 5]], dtype=torch.float32)
pred_instance1 = Instances(image_shapes[1])
pred_instance1.pred_boxes = Boxes(pred_boxes1)
keypoint_head = KRCNNConvDeconvUpsampleHead(
input_shape, num_keypoints=17, conv_dims=[512, 512]
).eval()
origin_outputs = keypoint_head(
keypoint_features, deepcopy([pred_instance0, pred_instance1])
)
fields = {
"pred_boxes": Boxes,
"pred_keypoints": torch.Tensor,
"pred_keypoint_heatmaps": torch.Tensor,
}
with freeze_training_mode(keypoint_head), patch_instances(fields) as NewInstances:
sciript_keypoint_head = torch.jit.script(keypoint_head)
pred_instance0 = NewInstances.from_instances(pred_instance0)
pred_instance1 = NewInstances.from_instances(pred_instance1)
script_outputs = sciript_keypoint_head(
keypoint_features, [pred_instance0, pred_instance1]
)
for origin_ins, script_ins in zip(origin_outputs, script_outputs):
assert_instances_allclose(origin_ins, script_ins, rtol=0)
def test_StandardROIHeads_scriptability(self):
cfg = get_cfg()
cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2"
cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5)
cfg.MODEL.MASK_ON = True
cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.01
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.01
num_images = 2
images_tensor = torch.rand(num_images, 20, 30)
image_sizes = [(10, 10), (20, 30)]
images = ImageList(images_tensor, image_sizes)
num_channels = 1024
features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)}
roi_heads = StandardROIHeads(cfg, feature_shape).eval()
proposal0 = Instances(image_sizes[0])
proposal_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32)
proposal0.proposal_boxes = Boxes(proposal_boxes0)
proposal0.objectness_logits = torch.tensor([0.5, 0.7], dtype=torch.float32)
proposal1 = Instances(image_sizes[1])
proposal_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]], dtype=torch.float32)
proposal1.proposal_boxes = Boxes(proposal_boxes1)
proposal1.objectness_logits = torch.tensor([0.1, 0.9], dtype=torch.float32)
proposals = [proposal0, proposal1]
pred_instances, _ = roi_heads(images, features, proposals)
fields = {
"objectness_logits": torch.Tensor,
"proposal_boxes": Boxes,
"pred_classes": torch.Tensor,
"scores": torch.Tensor,
"pred_masks": torch.Tensor,
"pred_boxes": Boxes,
"pred_keypoints": torch.Tensor,
"pred_keypoint_heatmaps": torch.Tensor,
}
with freeze_training_mode(roi_heads), patch_instances(fields) as new_instances:
proposal0 = new_instances.from_instances(proposal0)
proposal1 = new_instances.from_instances(proposal1)
proposals = [proposal0, proposal1]
scripted_rot_heads = torch.jit.script(roi_heads)
scripted_pred_instances, _ = scripted_rot_heads(images, features, proposals)
for instance, scripted_instance in zip(pred_instances, scripted_pred_instances):
assert_instances_allclose(instance, scripted_instance, rtol=0)
def test_PointRend_mask_head_tracing(self):
cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml")
point_rend.add_pointrend_config(cfg)
cfg.MODEL.ROI_HEADS.IN_FEATURES = ["p2", "p3"]
cfg.MODEL.ROI_MASK_HEAD.NAME = "PointRendMaskHead"
cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE = ""
cfg.MODEL.ROI_MASK_HEAD.POINT_HEAD_ON = True
chan = 256
head = point_rend.PointRendMaskHead(
cfg,
{
"p2": ShapeSpec(channels=chan, stride=4),
"p3": ShapeSpec(channels=chan, stride=8),
},
)
def gen_inputs(h, w, N):
p2 = torch.rand(1, chan, h, w)
p3 = torch.rand(1, chan, h // 2, w // 2)
boxes = random_boxes(N, max_coord=h)
return p2, p3, boxes
class Wrap(nn.ModuleDict):
def forward(self, p2, p3, boxes):
features = {
"p2": p2,
"p3": p3,
}
inst = Instances((p2.shape[2] * 4, p2.shape[3] * 4))
inst.pred_boxes = Boxes(boxes)
inst.pred_classes = torch.zeros(inst.__len__(), dtype=torch.long)
out = self.head(features, [inst])[0]
return out.pred_masks
model = Wrap({"head": head})
model.eval()
with torch.no_grad(), patch_builtin_len():
traced = torch.jit.trace(model, gen_inputs(302, 208, 20))
inputs = gen_inputs(100, 120, 30)
out_eager = model(*inputs)
out_trace = traced(*inputs)
self.assertTrue(torch.allclose(out_eager, out_trace))
if __name__ == "__main__":
unittest.main()
|