File size: 13,989 Bytes
500565b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import unittest
from copy import deepcopy
import torch
from torch import nn

from detectron2 import model_zoo
from detectron2.config import get_cfg
from detectron2.export.torchscript_patch import (
    freeze_training_mode,
    patch_builtin_len,
    patch_instances,
)
from detectron2.layers import ShapeSpec
from detectron2.modeling.proposal_generator.build import build_proposal_generator
from detectron2.modeling.roi_heads import (
    FastRCNNConvFCHead,
    KRCNNConvDeconvUpsampleHead,
    MaskRCNNConvUpsampleHead,
    StandardROIHeads,
    build_roi_heads,
)
from detectron2.projects import point_rend
from detectron2.structures import BitMasks, Boxes, ImageList, Instances, RotatedBoxes
from detectron2.utils.events import EventStorage
from detectron2.utils.testing import assert_instances_allclose, random_boxes

logger = logging.getLogger(__name__)

"""
Make sure the losses of ROIHeads/RPN do not change, to avoid
breaking the forward logic by mistake.
This relies on assumption that pytorch's RNG is stable.
"""


class ROIHeadsTest(unittest.TestCase):
    def test_roi_heads(self):
        torch.manual_seed(121)
        cfg = get_cfg()
        cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
        cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
        cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2"
        cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5)
        cfg.MODEL.MASK_ON = True
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
        feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)}

        image_shape = (15, 15)
        gt_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32)
        gt_instance0 = Instances(image_shape)
        gt_instance0.gt_boxes = Boxes(gt_boxes0)
        gt_instance0.gt_classes = torch.tensor([2, 1])
        gt_instance0.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5)
        gt_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]], dtype=torch.float32)
        gt_instance1 = Instances(image_shape)
        gt_instance1.gt_boxes = Boxes(gt_boxes1)
        gt_instance1.gt_classes = torch.tensor([1, 2])
        gt_instance1.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5)
        gt_instances = [gt_instance0, gt_instance1]

        proposal_generator = build_proposal_generator(cfg, feature_shape)
        roi_heads = StandardROIHeads(cfg, feature_shape)

        with EventStorage():  # capture events in a new storage to discard them
            proposals, proposal_losses = proposal_generator(images, features, gt_instances)
            _, detector_losses = roi_heads(images, features, proposals, gt_instances)

        detector_losses.update(proposal_losses)
        expected_losses = {
            "loss_cls": 4.5253729820251465,
            "loss_box_reg": 0.009785720147192478,
            "loss_mask": 0.693184494972229,
            "loss_rpn_cls": 0.08186662942171097,
            "loss_rpn_loc": 0.1104838103055954,
        }
        succ = all(
            torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0)))
            for name in detector_losses.keys()
        )
        self.assertTrue(
            succ,
            "Losses has changed! New losses: {}".format(
                {k: v.item() for k, v in detector_losses.items()}
            ),
        )

    def test_rroi_heads(self):
        torch.manual_seed(121)
        cfg = get_cfg()
        cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN"
        cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator"
        cfg.MODEL.ROI_HEADS.NAME = "RROIHeads"
        cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
        cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
        cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1)
        cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead"
        cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignRotated"
        cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5, 1)
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
        feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)}

        image_shape = (15, 15)
        gt_boxes0 = torch.tensor([[2, 2, 2, 2, 30], [4, 4, 4, 4, 0]], dtype=torch.float32)
        gt_instance0 = Instances(image_shape)
        gt_instance0.gt_boxes = RotatedBoxes(gt_boxes0)
        gt_instance0.gt_classes = torch.tensor([2, 1])
        gt_boxes1 = torch.tensor([[1.5, 5.5, 1, 3, 0], [8.5, 4, 3, 2, -50]], dtype=torch.float32)
        gt_instance1 = Instances(image_shape)
        gt_instance1.gt_boxes = RotatedBoxes(gt_boxes1)
        gt_instance1.gt_classes = torch.tensor([1, 2])
        gt_instances = [gt_instance0, gt_instance1]

        proposal_generator = build_proposal_generator(cfg, feature_shape)
        roi_heads = build_roi_heads(cfg, feature_shape)

        with EventStorage():  # capture events in a new storage to discard them
            proposals, proposal_losses = proposal_generator(images, features, gt_instances)
            _, detector_losses = roi_heads(images, features, proposals, gt_instances)

        detector_losses.update(proposal_losses)
        expected_losses = {
            "loss_cls": 4.365657806396484,
            "loss_box_reg": 0.0015851043863222003,
            "loss_rpn_cls": 0.2427729219198227,
            "loss_rpn_loc": 0.3646621108055115,
        }
        succ = all(
            torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0)))
            for name in detector_losses.keys()
        )
        self.assertTrue(
            succ,
            "Losses has changed! New losses: {}".format(
                {k: v.item() for k, v in detector_losses.items()}
            ),
        )

    def test_box_head_scriptability(self):
        input_shape = ShapeSpec(channels=1024, height=14, width=14)
        box_features = torch.randn(4, 1024, 14, 14)

        box_head = FastRCNNConvFCHead(
            input_shape, conv_dims=[512, 512], fc_dims=[1024, 1024]
        ).eval()
        script_box_head = torch.jit.script(box_head)

        origin_output = box_head(box_features)
        script_output = script_box_head(box_features)
        self.assertTrue(torch.equal(origin_output, script_output))

    def test_mask_head_scriptability(self):
        input_shape = ShapeSpec(channels=1024)
        mask_features = torch.randn(4, 1024, 14, 14)

        image_shapes = [(10, 10), (15, 15)]
        pred_instance0 = Instances(image_shapes[0])
        pred_classes0 = torch.tensor([1, 2, 3], dtype=torch.int64)
        pred_instance0.pred_classes = pred_classes0
        pred_instance1 = Instances(image_shapes[1])
        pred_classes1 = torch.tensor([4], dtype=torch.int64)
        pred_instance1.pred_classes = pred_classes1

        mask_head = MaskRCNNConvUpsampleHead(
            input_shape, num_classes=80, conv_dims=[256, 256]
        ).eval()
        # pred_instance will be in-place changed during the inference
        # process of `MaskRCNNConvUpsampleHead`
        origin_outputs = mask_head(mask_features, deepcopy([pred_instance0, pred_instance1]))

        fields = {"pred_masks": torch.Tensor, "pred_classes": torch.Tensor}
        with freeze_training_mode(mask_head), patch_instances(fields) as NewInstances:
            sciript_mask_head = torch.jit.script(mask_head)
            pred_instance0 = NewInstances.from_instances(pred_instance0)
            pred_instance1 = NewInstances.from_instances(pred_instance1)
            script_outputs = sciript_mask_head(mask_features, [pred_instance0, pred_instance1])

        for origin_ins, script_ins in zip(origin_outputs, script_outputs):
            assert_instances_allclose(origin_ins, script_ins, rtol=0)

    def test_keypoint_head_scriptability(self):
        input_shape = ShapeSpec(channels=1024, height=14, width=14)
        keypoint_features = torch.randn(4, 1024, 14, 14)

        image_shapes = [(10, 10), (15, 15)]
        pred_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6], [1, 5, 2, 8]], dtype=torch.float32)
        pred_instance0 = Instances(image_shapes[0])
        pred_instance0.pred_boxes = Boxes(pred_boxes0)
        pred_boxes1 = torch.tensor([[7, 3, 10, 5]], dtype=torch.float32)
        pred_instance1 = Instances(image_shapes[1])
        pred_instance1.pred_boxes = Boxes(pred_boxes1)

        keypoint_head = KRCNNConvDeconvUpsampleHead(
            input_shape, num_keypoints=17, conv_dims=[512, 512]
        ).eval()
        origin_outputs = keypoint_head(
            keypoint_features, deepcopy([pred_instance0, pred_instance1])
        )

        fields = {
            "pred_boxes": Boxes,
            "pred_keypoints": torch.Tensor,
            "pred_keypoint_heatmaps": torch.Tensor,
        }
        with freeze_training_mode(keypoint_head), patch_instances(fields) as NewInstances:
            sciript_keypoint_head = torch.jit.script(keypoint_head)
            pred_instance0 = NewInstances.from_instances(pred_instance0)
            pred_instance1 = NewInstances.from_instances(pred_instance1)
            script_outputs = sciript_keypoint_head(
                keypoint_features, [pred_instance0, pred_instance1]
            )

        for origin_ins, script_ins in zip(origin_outputs, script_outputs):
            assert_instances_allclose(origin_ins, script_ins, rtol=0)

    def test_StandardROIHeads_scriptability(self):
        cfg = get_cfg()
        cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
        cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
        cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2"
        cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5)
        cfg.MODEL.MASK_ON = True
        cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.01
        cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.01
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
        feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)}

        roi_heads = StandardROIHeads(cfg, feature_shape).eval()

        proposal0 = Instances(image_sizes[0])
        proposal_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32)
        proposal0.proposal_boxes = Boxes(proposal_boxes0)
        proposal0.objectness_logits = torch.tensor([0.5, 0.7], dtype=torch.float32)

        proposal1 = Instances(image_sizes[1])
        proposal_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]], dtype=torch.float32)
        proposal1.proposal_boxes = Boxes(proposal_boxes1)
        proposal1.objectness_logits = torch.tensor([0.1, 0.9], dtype=torch.float32)
        proposals = [proposal0, proposal1]

        pred_instances, _ = roi_heads(images, features, proposals)
        fields = {
            "objectness_logits": torch.Tensor,
            "proposal_boxes": Boxes,
            "pred_classes": torch.Tensor,
            "scores": torch.Tensor,
            "pred_masks": torch.Tensor,
            "pred_boxes": Boxes,
            "pred_keypoints": torch.Tensor,
            "pred_keypoint_heatmaps": torch.Tensor,
        }
        with freeze_training_mode(roi_heads), patch_instances(fields) as new_instances:
            proposal0 = new_instances.from_instances(proposal0)
            proposal1 = new_instances.from_instances(proposal1)
            proposals = [proposal0, proposal1]
            scripted_rot_heads = torch.jit.script(roi_heads)
            scripted_pred_instances, _ = scripted_rot_heads(images, features, proposals)

        for instance, scripted_instance in zip(pred_instances, scripted_pred_instances):
            assert_instances_allclose(instance, scripted_instance, rtol=0)

    def test_PointRend_mask_head_tracing(self):
        cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml")
        point_rend.add_pointrend_config(cfg)
        cfg.MODEL.ROI_HEADS.IN_FEATURES = ["p2", "p3"]
        cfg.MODEL.ROI_MASK_HEAD.NAME = "PointRendMaskHead"
        cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE = ""
        cfg.MODEL.ROI_MASK_HEAD.POINT_HEAD_ON = True
        chan = 256
        head = point_rend.PointRendMaskHead(
            cfg,
            {
                "p2": ShapeSpec(channels=chan, stride=4),
                "p3": ShapeSpec(channels=chan, stride=8),
            },
        )

        def gen_inputs(h, w, N):
            p2 = torch.rand(1, chan, h, w)
            p3 = torch.rand(1, chan, h // 2, w // 2)
            boxes = random_boxes(N, max_coord=h)
            return p2, p3, boxes

        class Wrap(nn.ModuleDict):
            def forward(self, p2, p3, boxes):
                features = {
                    "p2": p2,
                    "p3": p3,
                }
                inst = Instances((p2.shape[2] * 4, p2.shape[3] * 4))
                inst.pred_boxes = Boxes(boxes)
                inst.pred_classes = torch.zeros(inst.__len__(), dtype=torch.long)
                out = self.head(features, [inst])[0]
                return out.pred_masks

        model = Wrap({"head": head})
        model.eval()
        with torch.no_grad(), patch_builtin_len():
            traced = torch.jit.trace(model, gen_inputs(302, 208, 20))
            inputs = gen_inputs(100, 120, 30)
            out_eager = model(*inputs)
            out_trace = traced(*inputs)
            self.assertTrue(torch.allclose(out_eager, out_trace))


if __name__ == "__main__":
    unittest.main()