Spaces:
Running
Running
File size: 8,391 Bytes
1ee3939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# Copyright (c) Facebook, Inc. and its affiliates.
import importlib
import numpy as np
import os
import re
import subprocess
import sys
from collections import defaultdict
import PIL
import torch
import torchvision
from tabulate import tabulate
__all__ = ["collect_env_info"]
def collect_torch_env():
try:
import torch.__config__
return torch.__config__.show()
except ImportError:
# compatible with older versions of pytorch
from torch.utils.collect_env import get_pretty_env_info
return get_pretty_env_info()
def get_env_module():
var_name = "DETECTRON2_ENV_MODULE"
return var_name, os.environ.get(var_name, "<not set>")
def detect_compute_compatibility(CUDA_HOME, so_file):
try:
cuobjdump = os.path.join(CUDA_HOME, "bin", "cuobjdump")
if os.path.isfile(cuobjdump):
output = subprocess.check_output(
"'{}' --list-elf '{}'".format(cuobjdump, so_file), shell=True
)
output = output.decode("utf-8").strip().split("\n")
arch = []
for line in output:
line = re.findall(r"\.sm_([0-9]*)\.", line)[0]
arch.append(".".join(line))
arch = sorted(set(arch))
return ", ".join(arch)
else:
return so_file + "; cannot find cuobjdump"
except Exception:
# unhandled failure
return so_file
def collect_env_info():
has_gpu = torch.cuda.is_available() # true for both CUDA & ROCM
torch_version = torch.__version__
# NOTE that CUDA_HOME/ROCM_HOME could be None even when CUDA runtime libs are functional
from torch.utils.cpp_extension import CUDA_HOME, ROCM_HOME
has_rocm = False
if (getattr(torch.version, "hip", None) is not None) and (ROCM_HOME is not None):
has_rocm = True
has_cuda = has_gpu and (not has_rocm)
data = []
data.append(("sys.platform", sys.platform)) # check-template.yml depends on it
data.append(("Python", sys.version.replace("\n", "")))
data.append(("numpy", np.__version__))
try:
import detectron2 # noqa
data.append(
("detectron2", detectron2.__version__ + " @" + os.path.dirname(detectron2.__file__))
)
except ImportError:
data.append(("detectron2", "failed to import"))
except AttributeError:
data.append(("detectron2", "imported a wrong installation"))
try:
import detectron2._C as _C
except ImportError as e:
data.append(("detectron2._C", f"not built correctly: {e}"))
# print system compilers when extension fails to build
if sys.platform != "win32": # don't know what to do for windows
try:
# this is how torch/utils/cpp_extensions.py choose compiler
cxx = os.environ.get("CXX", "c++")
cxx = subprocess.check_output("'{}' --version".format(cxx), shell=True)
cxx = cxx.decode("utf-8").strip().split("\n")[0]
except subprocess.SubprocessError:
cxx = "Not found"
data.append(("Compiler ($CXX)", cxx))
if has_cuda and CUDA_HOME is not None:
try:
nvcc = os.path.join(CUDA_HOME, "bin", "nvcc")
nvcc = subprocess.check_output("'{}' -V".format(nvcc), shell=True)
nvcc = nvcc.decode("utf-8").strip().split("\n")[-1]
except subprocess.SubprocessError:
nvcc = "Not found"
data.append(("CUDA compiler", nvcc))
if has_cuda and sys.platform != "win32":
try:
so_file = importlib.util.find_spec("detectron2._C").origin
except (ImportError, AttributeError):
pass
else:
data.append(
("detectron2 arch flags", detect_compute_compatibility(CUDA_HOME, so_file))
)
else:
# print compilers that are used to build extension
data.append(("Compiler", _C.get_compiler_version()))
data.append(("CUDA compiler", _C.get_cuda_version())) # cuda or hip
if has_cuda and getattr(_C, "has_cuda", lambda: True)():
data.append(
("detectron2 arch flags", detect_compute_compatibility(CUDA_HOME, _C.__file__))
)
data.append(get_env_module())
data.append(("PyTorch", torch_version + " @" + os.path.dirname(torch.__file__)))
data.append(("PyTorch debug build", torch.version.debug))
if not has_gpu:
has_gpu_text = "No: torch.cuda.is_available() == False"
else:
has_gpu_text = "Yes"
data.append(("GPU available", has_gpu_text))
if has_gpu:
devices = defaultdict(list)
for k in range(torch.cuda.device_count()):
cap = ".".join((str(x) for x in torch.cuda.get_device_capability(k)))
name = torch.cuda.get_device_name(k) + f" (arch={cap})"
devices[name].append(str(k))
for name, devids in devices.items():
data.append(("GPU " + ",".join(devids), name))
if has_rocm:
msg = " - invalid!" if not (ROCM_HOME and os.path.isdir(ROCM_HOME)) else ""
data.append(("ROCM_HOME", str(ROCM_HOME) + msg))
else:
try:
from torch.utils.collect_env import get_nvidia_driver_version, run as _run
data.append(("Driver version", get_nvidia_driver_version(_run)))
except Exception:
pass
msg = " - invalid!" if not (CUDA_HOME and os.path.isdir(CUDA_HOME)) else ""
data.append(("CUDA_HOME", str(CUDA_HOME) + msg))
cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
if cuda_arch_list:
data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list))
data.append(("Pillow", PIL.__version__))
try:
data.append(
(
"torchvision",
str(torchvision.__version__) + " @" + os.path.dirname(torchvision.__file__),
)
)
if has_cuda:
try:
torchvision_C = importlib.util.find_spec("torchvision._C").origin
msg = detect_compute_compatibility(CUDA_HOME, torchvision_C)
data.append(("torchvision arch flags", msg))
except (ImportError, AttributeError):
data.append(("torchvision._C", "Not found"))
except AttributeError:
data.append(("torchvision", "unknown"))
try:
import fvcore
data.append(("fvcore", fvcore.__version__))
except (ImportError, AttributeError):
pass
try:
import iopath
data.append(("iopath", iopath.__version__))
except (ImportError, AttributeError):
pass
try:
import cv2
data.append(("cv2", cv2.__version__))
except (ImportError, AttributeError):
data.append(("cv2", "Not found"))
env_str = tabulate(data) + "\n"
env_str += collect_torch_env()
return env_str
def test_nccl_ops():
num_gpu = torch.cuda.device_count()
if os.access("/tmp", os.W_OK):
import torch.multiprocessing as mp
dist_url = "file:///tmp/nccl_tmp_file"
print("Testing NCCL connectivity ... this should not hang.")
mp.spawn(_test_nccl_worker, nprocs=num_gpu, args=(num_gpu, dist_url), daemon=False)
print("NCCL succeeded.")
def _test_nccl_worker(rank, num_gpu, dist_url):
import torch.distributed as dist
dist.init_process_group(backend="NCCL", init_method=dist_url, rank=rank, world_size=num_gpu)
dist.barrier(device_ids=[rank])
if __name__ == "__main__":
try:
from detectron2.utils.collect_env import collect_env_info as f
print(f())
except ImportError:
print(collect_env_info())
if torch.cuda.is_available():
num_gpu = torch.cuda.device_count()
for k in range(num_gpu):
device = f"cuda:{k}"
try:
x = torch.tensor([1, 2.0], dtype=torch.float32)
x = x.to(device)
except Exception as e:
print(
f"Unable to copy tensor to device={device}: {e}. "
"Your CUDA environment is broken."
)
if num_gpu > 1:
test_nccl_ops()
|