File size: 8,354 Bytes
500565b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright (c) Facebook, Inc. and its affiliates.
import json
import math
import numpy as np
import unittest
import torch

from detectron2.structures import Boxes, BoxMode, pairwise_ioa, pairwise_iou
from detectron2.utils.testing import reload_script_model


class TestBoxMode(unittest.TestCase):
    def _convert_xy_to_wh(self, x):
        return BoxMode.convert(x, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)

    def _convert_xywha_to_xyxy(self, x):
        return BoxMode.convert(x, BoxMode.XYWHA_ABS, BoxMode.XYXY_ABS)

    def _convert_xywh_to_xywha(self, x):
        return BoxMode.convert(x, BoxMode.XYWH_ABS, BoxMode.XYWHA_ABS)

    def test_convert_int_mode(self):
        BoxMode.convert([1, 2, 3, 4], 0, 1)

    def test_box_convert_list(self):
        for tp in [list, tuple]:
            box = tp([5.0, 5.0, 10.0, 10.0])
            output = self._convert_xy_to_wh(box)
            self.assertIsInstance(output, tp)
            self.assertIsInstance(output[0], float)
            self.assertEqual(output, tp([5.0, 5.0, 5.0, 5.0]))

            with self.assertRaises(Exception):
                self._convert_xy_to_wh([box])

    def test_box_convert_array(self):
        box = np.asarray([[5, 5, 10, 10], [1, 1, 2, 3]])
        output = self._convert_xy_to_wh(box)
        self.assertEqual(output.dtype, box.dtype)
        self.assertEqual(output.shape, box.shape)
        self.assertTrue((output[0] == [5, 5, 5, 5]).all())
        self.assertTrue((output[1] == [1, 1, 1, 2]).all())

    def test_box_convert_cpu_tensor(self):
        box = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]])
        output = self._convert_xy_to_wh(box)
        self.assertEqual(output.dtype, box.dtype)
        self.assertEqual(output.shape, box.shape)
        output = output.numpy()
        self.assertTrue((output[0] == [5, 5, 5, 5]).all())
        self.assertTrue((output[1] == [1, 1, 1, 2]).all())

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_box_convert_cuda_tensor(self):
        box = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]]).cuda()
        output = self._convert_xy_to_wh(box)
        self.assertEqual(output.dtype, box.dtype)
        self.assertEqual(output.shape, box.shape)
        self.assertEqual(output.device, box.device)
        output = output.cpu().numpy()
        self.assertTrue((output[0] == [5, 5, 5, 5]).all())
        self.assertTrue((output[1] == [1, 1, 1, 2]).all())

    def test_box_convert_xywha_to_xyxy_list(self):
        for tp in [list, tuple]:
            box = tp([50, 50, 30, 20, 0])
            output = self._convert_xywha_to_xyxy(box)
            self.assertIsInstance(output, tp)
            self.assertEqual(output, tp([35, 40, 65, 60]))

            with self.assertRaises(Exception):
                self._convert_xywha_to_xyxy([box])

    def test_box_convert_xywha_to_xyxy_array(self):
        for dtype in [np.float64, np.float32]:
            box = np.asarray(
                [
                    [50, 50, 30, 20, 0],
                    [50, 50, 30, 20, 90],
                    [1, 1, math.sqrt(2), math.sqrt(2), -45],
                ],
                dtype=dtype,
            )
            output = self._convert_xywha_to_xyxy(box)
            self.assertEqual(output.dtype, box.dtype)
            expected = np.asarray([[35, 40, 65, 60], [40, 35, 60, 65], [0, 0, 2, 2]], dtype=dtype)
            self.assertTrue(np.allclose(output, expected, atol=1e-6), "output={}".format(output))

    def test_box_convert_xywha_to_xyxy_tensor(self):
        for dtype in [torch.float32, torch.float64]:
            box = torch.tensor(
                [
                    [50, 50, 30, 20, 0],
                    [50, 50, 30, 20, 90],
                    [1, 1, math.sqrt(2), math.sqrt(2), -45],
                ],
                dtype=dtype,
            )
            output = self._convert_xywha_to_xyxy(box)
            self.assertEqual(output.dtype, box.dtype)
            expected = torch.tensor([[35, 40, 65, 60], [40, 35, 60, 65], [0, 0, 2, 2]], dtype=dtype)

            self.assertTrue(torch.allclose(output, expected, atol=1e-6), "output={}".format(output))

    def test_box_convert_xywh_to_xywha_list(self):
        for tp in [list, tuple]:
            box = tp([50, 50, 30, 20])
            output = self._convert_xywh_to_xywha(box)
            self.assertIsInstance(output, tp)
            self.assertEqual(output, tp([65, 60, 30, 20, 0]))

            with self.assertRaises(Exception):
                self._convert_xywh_to_xywha([box])

    def test_box_convert_xywh_to_xywha_array(self):
        for dtype in [np.float64, np.float32]:
            box = np.asarray([[30, 40, 70, 60], [30, 40, 60, 70], [-1, -1, 2, 2]], dtype=dtype)
            output = self._convert_xywh_to_xywha(box)
            self.assertEqual(output.dtype, box.dtype)
            expected = np.asarray(
                [[65, 70, 70, 60, 0], [60, 75, 60, 70, 0], [0, 0, 2, 2, 0]], dtype=dtype
            )
            self.assertTrue(np.allclose(output, expected, atol=1e-6), "output={}".format(output))

    def test_box_convert_xywh_to_xywha_tensor(self):
        for dtype in [torch.float32, torch.float64]:
            box = torch.tensor([[30, 40, 70, 60], [30, 40, 60, 70], [-1, -1, 2, 2]], dtype=dtype)
            output = self._convert_xywh_to_xywha(box)
            self.assertEqual(output.dtype, box.dtype)
            expected = torch.tensor(
                [[65, 70, 70, 60, 0], [60, 75, 60, 70, 0], [0, 0, 2, 2, 0]], dtype=dtype
            )

            self.assertTrue(torch.allclose(output, expected, atol=1e-6), "output={}".format(output))

    def test_json_serializable(self):
        payload = {"box_mode": BoxMode.XYWH_REL}
        try:
            json.dumps(payload)
        except Exception:
            self.fail("JSON serialization failed")

    def test_json_deserializable(self):
        payload = '{"box_mode": 2}'
        obj = json.loads(payload)
        try:
            obj["box_mode"] = BoxMode(obj["box_mode"])
        except Exception:
            self.fail("JSON deserialization failed")


class TestBoxIOU(unittest.TestCase):
    def create_boxes(self):
        boxes1 = torch.tensor([[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]])

        boxes2 = torch.tensor(
            [
                [0.0, 0.0, 1.0, 1.0],
                [0.0, 0.0, 0.5, 1.0],
                [0.0, 0.0, 1.0, 0.5],
                [0.0, 0.0, 0.5, 0.5],
                [0.5, 0.5, 1.0, 1.0],
                [0.5, 0.5, 1.5, 1.5],
            ]
        )
        return boxes1, boxes2

    def test_pairwise_iou(self):
        boxes1, boxes2 = self.create_boxes()
        expected_ious = torch.tensor(
            [
                [1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
                [1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
            ]
        )

        ious = pairwise_iou(Boxes(boxes1), Boxes(boxes2))
        self.assertTrue(torch.allclose(ious, expected_ious))

    def test_pairwise_ioa(self):
        boxes1, boxes2 = self.create_boxes()
        expected_ioas = torch.tensor(
            [[1.0, 1.0, 1.0, 1.0, 1.0, 0.25], [1.0, 1.0, 1.0, 1.0, 1.0, 0.25]]
        )
        ioas = pairwise_ioa(Boxes(boxes1), Boxes(boxes2))
        self.assertTrue(torch.allclose(ioas, expected_ioas))


class TestBoxes(unittest.TestCase):
    def test_empty_cat(self):
        x = Boxes.cat([])
        self.assertTrue(x.tensor.shape, (0, 4))

    def test_to(self):
        x = Boxes(torch.rand(3, 4))
        self.assertEqual(x.to(device="cpu").tensor.device.type, "cpu")

    def test_scriptability(self):
        def func(x):
            boxes = Boxes(x)
            test = boxes.to(torch.device("cpu")).tensor
            return boxes.area(), test

        f = torch.jit.script(func)
        f = reload_script_model(f)
        f(torch.rand((3, 4)))

        data = torch.rand((3, 4))

        def func_cat(x: torch.Tensor):
            boxes1 = Boxes(x)
            boxes2 = Boxes(x)
            # boxes3 = Boxes.cat([boxes1, boxes2])  # this is not supported by torchsript for now.
            boxes3 = boxes1.cat([boxes1, boxes2])
            return boxes3

        f = torch.jit.script(func_cat)
        script_box = f(data)
        self.assertTrue(torch.equal(torch.cat([data, data]), script_box.tensor))


if __name__ == "__main__":
    unittest.main()