Spaces:
Running
Running
File size: 8,354 Bytes
500565b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# Copyright (c) Facebook, Inc. and its affiliates.
import json
import math
import numpy as np
import unittest
import torch
from detectron2.structures import Boxes, BoxMode, pairwise_ioa, pairwise_iou
from detectron2.utils.testing import reload_script_model
class TestBoxMode(unittest.TestCase):
def _convert_xy_to_wh(self, x):
return BoxMode.convert(x, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
def _convert_xywha_to_xyxy(self, x):
return BoxMode.convert(x, BoxMode.XYWHA_ABS, BoxMode.XYXY_ABS)
def _convert_xywh_to_xywha(self, x):
return BoxMode.convert(x, BoxMode.XYWH_ABS, BoxMode.XYWHA_ABS)
def test_convert_int_mode(self):
BoxMode.convert([1, 2, 3, 4], 0, 1)
def test_box_convert_list(self):
for tp in [list, tuple]:
box = tp([5.0, 5.0, 10.0, 10.0])
output = self._convert_xy_to_wh(box)
self.assertIsInstance(output, tp)
self.assertIsInstance(output[0], float)
self.assertEqual(output, tp([5.0, 5.0, 5.0, 5.0]))
with self.assertRaises(Exception):
self._convert_xy_to_wh([box])
def test_box_convert_array(self):
box = np.asarray([[5, 5, 10, 10], [1, 1, 2, 3]])
output = self._convert_xy_to_wh(box)
self.assertEqual(output.dtype, box.dtype)
self.assertEqual(output.shape, box.shape)
self.assertTrue((output[0] == [5, 5, 5, 5]).all())
self.assertTrue((output[1] == [1, 1, 1, 2]).all())
def test_box_convert_cpu_tensor(self):
box = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]])
output = self._convert_xy_to_wh(box)
self.assertEqual(output.dtype, box.dtype)
self.assertEqual(output.shape, box.shape)
output = output.numpy()
self.assertTrue((output[0] == [5, 5, 5, 5]).all())
self.assertTrue((output[1] == [1, 1, 1, 2]).all())
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
def test_box_convert_cuda_tensor(self):
box = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]]).cuda()
output = self._convert_xy_to_wh(box)
self.assertEqual(output.dtype, box.dtype)
self.assertEqual(output.shape, box.shape)
self.assertEqual(output.device, box.device)
output = output.cpu().numpy()
self.assertTrue((output[0] == [5, 5, 5, 5]).all())
self.assertTrue((output[1] == [1, 1, 1, 2]).all())
def test_box_convert_xywha_to_xyxy_list(self):
for tp in [list, tuple]:
box = tp([50, 50, 30, 20, 0])
output = self._convert_xywha_to_xyxy(box)
self.assertIsInstance(output, tp)
self.assertEqual(output, tp([35, 40, 65, 60]))
with self.assertRaises(Exception):
self._convert_xywha_to_xyxy([box])
def test_box_convert_xywha_to_xyxy_array(self):
for dtype in [np.float64, np.float32]:
box = np.asarray(
[
[50, 50, 30, 20, 0],
[50, 50, 30, 20, 90],
[1, 1, math.sqrt(2), math.sqrt(2), -45],
],
dtype=dtype,
)
output = self._convert_xywha_to_xyxy(box)
self.assertEqual(output.dtype, box.dtype)
expected = np.asarray([[35, 40, 65, 60], [40, 35, 60, 65], [0, 0, 2, 2]], dtype=dtype)
self.assertTrue(np.allclose(output, expected, atol=1e-6), "output={}".format(output))
def test_box_convert_xywha_to_xyxy_tensor(self):
for dtype in [torch.float32, torch.float64]:
box = torch.tensor(
[
[50, 50, 30, 20, 0],
[50, 50, 30, 20, 90],
[1, 1, math.sqrt(2), math.sqrt(2), -45],
],
dtype=dtype,
)
output = self._convert_xywha_to_xyxy(box)
self.assertEqual(output.dtype, box.dtype)
expected = torch.tensor([[35, 40, 65, 60], [40, 35, 60, 65], [0, 0, 2, 2]], dtype=dtype)
self.assertTrue(torch.allclose(output, expected, atol=1e-6), "output={}".format(output))
def test_box_convert_xywh_to_xywha_list(self):
for tp in [list, tuple]:
box = tp([50, 50, 30, 20])
output = self._convert_xywh_to_xywha(box)
self.assertIsInstance(output, tp)
self.assertEqual(output, tp([65, 60, 30, 20, 0]))
with self.assertRaises(Exception):
self._convert_xywh_to_xywha([box])
def test_box_convert_xywh_to_xywha_array(self):
for dtype in [np.float64, np.float32]:
box = np.asarray([[30, 40, 70, 60], [30, 40, 60, 70], [-1, -1, 2, 2]], dtype=dtype)
output = self._convert_xywh_to_xywha(box)
self.assertEqual(output.dtype, box.dtype)
expected = np.asarray(
[[65, 70, 70, 60, 0], [60, 75, 60, 70, 0], [0, 0, 2, 2, 0]], dtype=dtype
)
self.assertTrue(np.allclose(output, expected, atol=1e-6), "output={}".format(output))
def test_box_convert_xywh_to_xywha_tensor(self):
for dtype in [torch.float32, torch.float64]:
box = torch.tensor([[30, 40, 70, 60], [30, 40, 60, 70], [-1, -1, 2, 2]], dtype=dtype)
output = self._convert_xywh_to_xywha(box)
self.assertEqual(output.dtype, box.dtype)
expected = torch.tensor(
[[65, 70, 70, 60, 0], [60, 75, 60, 70, 0], [0, 0, 2, 2, 0]], dtype=dtype
)
self.assertTrue(torch.allclose(output, expected, atol=1e-6), "output={}".format(output))
def test_json_serializable(self):
payload = {"box_mode": BoxMode.XYWH_REL}
try:
json.dumps(payload)
except Exception:
self.fail("JSON serialization failed")
def test_json_deserializable(self):
payload = '{"box_mode": 2}'
obj = json.loads(payload)
try:
obj["box_mode"] = BoxMode(obj["box_mode"])
except Exception:
self.fail("JSON deserialization failed")
class TestBoxIOU(unittest.TestCase):
def create_boxes(self):
boxes1 = torch.tensor([[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]])
boxes2 = torch.tensor(
[
[0.0, 0.0, 1.0, 1.0],
[0.0, 0.0, 0.5, 1.0],
[0.0, 0.0, 1.0, 0.5],
[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 1.0],
[0.5, 0.5, 1.5, 1.5],
]
)
return boxes1, boxes2
def test_pairwise_iou(self):
boxes1, boxes2 = self.create_boxes()
expected_ious = torch.tensor(
[
[1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
[1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
]
)
ious = pairwise_iou(Boxes(boxes1), Boxes(boxes2))
self.assertTrue(torch.allclose(ious, expected_ious))
def test_pairwise_ioa(self):
boxes1, boxes2 = self.create_boxes()
expected_ioas = torch.tensor(
[[1.0, 1.0, 1.0, 1.0, 1.0, 0.25], [1.0, 1.0, 1.0, 1.0, 1.0, 0.25]]
)
ioas = pairwise_ioa(Boxes(boxes1), Boxes(boxes2))
self.assertTrue(torch.allclose(ioas, expected_ioas))
class TestBoxes(unittest.TestCase):
def test_empty_cat(self):
x = Boxes.cat([])
self.assertTrue(x.tensor.shape, (0, 4))
def test_to(self):
x = Boxes(torch.rand(3, 4))
self.assertEqual(x.to(device="cpu").tensor.device.type, "cpu")
def test_scriptability(self):
def func(x):
boxes = Boxes(x)
test = boxes.to(torch.device("cpu")).tensor
return boxes.area(), test
f = torch.jit.script(func)
f = reload_script_model(f)
f(torch.rand((3, 4)))
data = torch.rand((3, 4))
def func_cat(x: torch.Tensor):
boxes1 = Boxes(x)
boxes2 = Boxes(x)
# boxes3 = Boxes.cat([boxes1, boxes2]) # this is not supported by torchsript for now.
boxes3 = boxes1.cat([boxes1, boxes2])
return boxes3
f = torch.jit.script(func_cat)
script_box = f(data)
self.assertTrue(torch.equal(torch.cat([data, data]), script_box.tensor))
if __name__ == "__main__":
unittest.main()
|