File size: 30,796 Bytes
500565b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
# Chart-based Dense Pose Estimation for Humans and Animals

## <a name="Overview"></a> Overview

The goal of chart-based DensePose methods is to establish dense correspondences
between image pixels and 3D object mesh by splitting the latter into charts and estimating
for each pixel the corresponding chart index `I` and local chart coordinates `(U, V)`.

<div align="center">
  <img src="https://dl.fbaipublicfiles.com/densepose/web/densepose_teaser_compressed_25.gif" width="700px" />
</div>

The charts used for human DensePose estimation are shown in Figure 1.
The human body is split into 24 parts, each part is parametrized by `U` and `V`
coordinates, each taking values in `[0, 1]`.

<div align="center">
  <img src="https://dl.fbaipublicfiles.com/densepose/web/coords.png" width="400px" />
</div>
<p class="image-caption"><b>Figure 1.</b> Partitioning and parametrization of human body surface.</p>

The pipeline uses [Faster R-CNN](https://arxiv.org/abs/1506.01497)
with [Feature Pyramid Network](https://arxiv.org/abs/1612.03144) meta architecture
outlined in Figure 2. For each detected object, the model predicts
its coarse segmentation `S` (2 or 15 channels: foreground / background or
background + 14 predefined body parts), fine segmentation `I` (25 channels:
background + 24 predefined body parts) and local chart coordinates `U` and `V`.

<div align="center">
  <img src="https://dl.fbaipublicfiles.com/densepose/web/densepose_pipeline_iuv.png" width="500px" />
</div>
<p class="image-caption"><b>Figure 2.</b> DensePose chart-based architecture based on Faster R-CNN with Feature Pyramid Network (FPN).</p>

### <a name="Bootstrap"></a> Bootstrapping Chart-Based Models

[Sanakoyeu et al., 2020](https://arxiv.org/pdf/2003.00080.pdf) introduced a pipeline
to transfer DensePose models trained on humans to proximal animal classes (chimpanzees),
which is summarized in Figure 3. The training proceeds in two stages:

First, a *master* model is trained on data from source domain (humans with full
DensePose annotation `S`, `I`, `U` and `V`)
and supporting domain (animals with segmentation annotation only).
Only selected animal classes are chosen from the supporting
domain through *category filters* to guarantee the quality of target domain results.
The training is done in *class-agnostic manner*: all selected categories are mapped
to a single category (human).

Second, a *student* model is trained on data from source and supporting domains,
as well as data from target domain obtained by applying the master model, selecting
high-confidence detections and sampling the results.

<div align="center">
  <img src="https://dl.fbaipublicfiles.com/densepose/web/densepose_pipeline_bootstrap_iuv.png" width="1000px" />
</div>
<p class="image-caption"><b>Figure 3.</b> Domain adaptation: <i>master</i> model is trained on data from source and
supporting domains to produce predictions in target domain; <i>student</i> model combines data from source and
supporting domains, as well as sampled predictions from the master model on target domain to improve
target domain predictions quality.</p>

Examples of pretrained master and student models are available in the [Model Zoo](#ModelZooBootstrap).
For more details on the bootstrapping pipeline, please see [Bootstrapping Pipeline](BOOTSTRAPPING_PIPELINE.md).

### Datasets

For more details on datasets used for chart-based model training and validation,
please refer to the [DensePose Datasets](DENSEPOSE_DATASETS.md) page.

## <a name="ModelZoo"></a> Model Zoo and Baselines

### Legacy Models

Baselines trained using schedules from [GΓΌler et al, 2018](https://arxiv.org/pdf/1802.00434.pdf)

<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">segm<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_s1x_legacy -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_s1x_legacy.yaml">R_50_FPN_s1x_legacy</a></td>
<td align="center">s1x</td>
<td align="center">0.307</td>
<td align="center">0.051</td>
<td align="center">3.2</td>
<td align="center">58.1</td>
<td align="center">58.2</td>
<td align="center">52.1</td>
<td align="center">54.9</td>
<td align="center">164832157</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x_legacy/164832157/model_final_d366fa.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x_legacy/164832157/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_s1x_legacy -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_s1x_legacy.yaml">R_101_FPN_s1x_legacy</a></td>
<td align="center">s1x</td>
<td align="center">0.390</td>
<td align="center">0.063</td>
<td align="center">4.3</td>
<td align="center">59.5</td>
<td align="center">59.3</td>
<td align="center">53.2</td>
<td align="center">56.0</td>
<td align="center">164832182</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_s1x_legacy/164832182/model_final_10af0e.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_s1x_legacy/164832182/metrics.json">metrics</a></td>
</tr>
</tbody></table>

### Improved Baselines, Original Fully Convolutional Head

These models use an improved training schedule and Panoptic FPN head from [Kirillov et al, 2019](https://arxiv.org/abs/1901.02446).

<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">segm<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_s1x.yaml">R_50_FPN_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.359</td>
<td align="center">0.066</td>
<td align="center">4.5</td>
<td align="center">61.2</td>
<td align="center">67.2</td>
<td align="center">63.7</td>
<td align="center">65.3</td>
<td align="center">165712039</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_s1x.yaml">R_101_FPN_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.428</td>
<td align="center">0.079</td>
<td align="center">5.8</td>
<td align="center">62.3</td>
<td align="center">67.8</td>
<td align="center">64.5</td>
<td align="center">66.2</td>
<td align="center">165712084</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_s1x/165712084/model_final_c6ab63.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_s1x/165712084/metrics.json">metrics</a></td>
</tr>
</tbody></table>

### <a name="ModelZooDeepLabV3"> Improved Baselines, DeepLabV3 Head

These models use an improved training schedule, Panoptic FPN head from [Kirillov et al, 2019](https://arxiv.org/abs/1901.02446) and DeepLabV3 head from [Chen et al, 2017](https://arxiv.org/abs/1706.05587).

<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">segm<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_DL_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_DL_s1x.yaml">R_50_FPN_DL_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.392</td>
<td align="center">0.070</td>
<td align="center">6.7</td>
<td align="center">61.1</td>
<td align="center">68.3</td>
<td align="center">65.6</td>
<td align="center">66.7</td>
<td align="center">165712097</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_s1x/165712097/model_final_0ed407.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_s1x/165712097/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_DL_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml">R_101_FPN_DL_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.478</td>
<td align="center">0.083</td>
<td align="center">7.0</td>
<td align="center">62.3</td>
<td align="center">68.7</td>
<td align="center">66.3</td>
<td align="center">67.6</td>
<td align="center">165712116</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_s1x/165712116/model_final_844d15.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_s1x/165712116/metrics.json">metrics</a></td>
</tr>
</tbody></table>

### <a name="ModelZooConfidence"> Baselines with Confidence Estimation

These models perform additional estimation of confidence in regressed UV coodrinates, along the lines of [Neverova et al., 2019](https://papers.nips.cc/paper/8378-correlated-uncertainty-for-learning-dense-correspondences-from-noisy-labels).

<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">segm<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_WC1_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_WC1_s1x.yaml">R_50_FPN_WC1_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.353</td>
<td align="center">0.064</td>
<td align="center">4.6</td>
<td align="center">60.5</td>
<td align="center">67.0</td>
<td align="center">64.2</td>
<td align="center">65.4</td>
<td align="center">173862049</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC1_s1x/173862049/model_final_289019.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC1_s1x/173862049/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_WC2_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_WC2_s1x.yaml">R_50_FPN_WC2_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.364</td>
<td align="center">0.066</td>
<td align="center">4.8</td>
<td align="center">60.7</td>
<td align="center">66.9</td>
<td align="center">64.2</td>
<td align="center">65.7</td>
<td align="center">173861455</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC2_s1x/173861455/model_final_3abe14.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC2_s1x/173861455/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_DL_WC1_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml">R_50_FPN_DL_WC1_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.397</td>
<td align="center">0.068</td>
<td align="center">6.7</td>
<td align="center">61.1</td>
<td align="center">68.1</td>
<td align="center">65.8</td>
<td align="center">67.0</td>
<td align="center">173067973</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC1_s1x/173067973/model_final_b1e525.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC1_s1x/173067973/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_DL_WC2_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml">R_50_FPN_DL_WC2_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.410</td>
<td align="center">0.070</td>
<td align="center">6.8</td>
<td align="center">60.8</td>
<td align="center">67.9</td>
<td align="center">65.6</td>
<td align="center">66.7</td>
<td align="center">173859335</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC2_s1x/173859335/model_final_60fed4.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC2_s1x/173859335/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_WC1_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_WC1_s1x.yaml">R_101_FPN_WC1_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.435</td>
<td align="center">0.076</td>
<td align="center">5.7</td>
<td align="center">62.5</td>
<td align="center">67.6</td>
<td align="center">64.9</td>
<td align="center">66.3</td>
<td align="center">171402969</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC1_s1x/171402969/model_final_9e47f0.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC1_s1x/171402969/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_WC2_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_WC2_s1x.yaml">R_101_FPN_WC2_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.450</td>
<td align="center">0.078</td>
<td align="center">5.7</td>
<td align="center">62.3</td>
<td align="center">67.6</td>
<td align="center">64.8</td>
<td align="center">66.4</td>
<td align="center">173860702</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC2_s1x/173860702/model_final_5ea023.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC2_s1x/173860702/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_DL_WC1_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml">R_101_FPN_DL_WC1_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.479</td>
<td align="center">0.081</td>
<td align="center">7.9</td>
<td align="center">62.0</td>
<td align="center">68.4</td>
<td align="center">66.2</td>
<td align="center">67.2</td>
<td align="center">173858525</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC1_s1x/173858525/model_final_f359f3.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC1_s1x/173858525/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_DL_WC2_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml">R_101_FPN_DL_WC2_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.491</td>
<td align="center">0.082</td>
<td align="center">7.6</td>
<td align="center">61.7</td>
<td align="center">68.3</td>
<td align="center">65.9</td>
<td align="center">67.2</td>
<td align="center">173294801</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC2_s1x/173294801/model_final_6e1ed1.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC2_s1x/173294801/metrics.json">metrics</a></td>
</tr>
</tbody></table>

Acronyms:

`WC1`: with confidence estimation model type 1 for `U` and `V`

`WC2`: with confidence estimation model type 2 for `U` and `V`

### <a name="ModelZooMaskConfidence"> Baselines with Mask Confidence Estimation

Models that perform estimation of confidence in regressed UV coodrinates
as well as confidences associated with coarse and fine segmentation,
see [Sanakoyeu et al., 2020](https://arxiv.org/pdf/2003.00080.pdf) for details.

<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">segm<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_WC1M_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_WC1M_s1x.yaml">R_50_FPN_WC1M_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.381</td>
<td align="center">0.066</td>
<td align="center">4.8</td>
<td align="center">60.6</td>
<td align="center">66.7</td>
<td align="center">64.0</td>
<td align="center">65.4</td>
<td align="center">217144516</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC1M_s1x/217144516/model_final_48a9d9.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC1M_s1x/217144516/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_WC2M_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_WC2M_s1x.yaml">R_50_FPN_WC2M_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.342</td>
<td align="center">0.068</td>
<td align="center">5.0</td>
<td align="center">60.7</td>
<td align="center">66.9</td>
<td align="center">64.2</td>
<td align="center">65.5</td>
<td align="center">216245640</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC2M_s1x/216245640/model_final_d79ada.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC2M_s1x/216245640/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_DL_WC1M_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_DL_WC1M_s1x.yaml">R_50_FPN_DL_WC1M_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.371</td>
<td align="center">0.068</td>
<td align="center">6.0</td>
<td align="center">60.7</td>
<td align="center">68.0</td>
<td align="center">65.2</td>
<td align="center">66.7</td>
<td align="center">216245703</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC1M_s1x/216245703/model_final_61971e.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC1M_s1x/216245703/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_DL_WC2M_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_DL_WC2M_s1x.yaml">R_50_FPN_DL_WC2M_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.385</td>
<td align="center">0.071</td>
<td align="center">6.1</td>
<td align="center">60.8</td>
<td align="center">68.1</td>
<td align="center">65.0</td>
<td align="center">66.4</td>
<td align="center">216245758</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC2M_s1x/216245758/model_final_7bfb43.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC2M_s1x/216245758/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_WC1M_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_WC1M_s1x.yaml">R_101_FPN_WC1M_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.423</td>
<td align="center">0.079</td>
<td align="center">5.9</td>
<td align="center">62.0</td>
<td align="center">67.3</td>
<td align="center">64.8</td>
<td align="center">66.0</td>
<td align="center">216453687</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC1M_s1x/216453687/model_final_0a7287.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC1M_s1x/216453687/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_WC2M_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_WC2M_s1x.yaml">R_101_FPN_WC2M_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.436</td>
<td align="center">0.080</td>
<td align="center">5.9</td>
<td align="center">62.5</td>
<td align="center">67.4</td>
<td align="center">64.5</td>
<td align="center">66.0</td>
<td align="center">216245682</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC2M_s1x/216245682/model_final_e354d9.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC2M_s1x/216245682/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_DL_WC1M_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_DL_WC1M_s1x.yaml">R_101_FPN_DL_WC1M_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.453</td>
<td align="center">0.079</td>
<td align="center">6.8</td>
<td align="center">62.0</td>
<td align="center">68.1</td>
<td align="center">66.4</td>
<td align="center">67.1</td>
<td align="center">216245771</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC1M_s1x/216245771/model_final_0ebeb3.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC1M_s1x/216245771/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_DL_WC2M_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml">R_101_FPN_DL_WC2M_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.464</td>
<td align="center">0.080</td>
<td align="center">6.9</td>
<td align="center">61.9</td>
<td align="center">68.2</td>
<td align="center">66.1</td>
<td align="center">67.1</td>
<td align="center">216245790</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC2M_s1x/216245790/model_final_de6e7a.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC2M_s1x/216245790/metrics.json">metrics</a></td>
</tr>
</tbody></table>

Acronyms:

`WC1M`: with confidence estimation model type 1 for `U` and `V` and mask confidence estimation

`WC2M`: with confidence estimation model type 2 for `U` and `V` and mask confidence estimation

### <a name="ModelZooBootstrap"></a> Bootstrapping Baselines

Master and student models trained using the bootstrapping pipeline with chimpanzee as the target category,
see [Sanakoyeu et al., 2020](https://arxiv.org/pdf/2003.00080.pdf)
and [Bootstrapping Pipeline](BOOTSTRAPPING_PIPELINE.md) for details.
Evaluation is performed on [DensePose Chimps](DENSEPOSE_DATASETS.md#densepose-chimps) dataset.

<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">segm<br/>AP</th>
<th valign="bottom">dp. APex<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA -->
<tr><td align="left"><a href="../configs/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA.yaml">R_50_FPN_DL_WC1M_3x_Atop10P_CA</a></td>
<td align="center">3x</td>
<td align="center">0.522</td>
<td align="center">0.073</td>
<td align="center">9.7</td>
<td align="center">61.3</td>
<td align="center">59.1</td>
<td align="center">36.2</td>
<td align="center">20.0</td>
<td align="center">30.2</td>
<td align="center">217578784</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA/217578784/model_final_9fe1cc.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10
P_CA/217578784/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uniform -->
<tr><td align="left"><a href="../configs/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uniform.yaml">R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uniform</a></td>
<td align="center">3x</td>
<td align="center">1.939</td>
<td align="center">0.072</td>
<td align="center">10.1</td>
<td align="center">60.9</td>
<td align="center">58.5</td>
<td align="center">37.2</td>
<td align="center">21.5</td>
<td align="center">31.0</td>
<td align="center">256453729</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uniform/256453729/model_final_241ff5.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uniform/256453729/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uv -->
<tr><td align="left"><a href="../configs/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uv.yaml">R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uv</a></td>
<td align="center">3x</td>
<td align="center">1.985</td>
<td align="center">0.072</td>
<td align="center">9.6</td>
<td align="center">61.4</td>
<td align="center">58.9</td>
<td align="center">38.3</td>
<td align="center">22.2</td>
<td align="center">32.1</td>
<td align="center">256452095</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uv/256452095/model_final_d689e2.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uv/256452095/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_finesegm -->
<tr><td align="left"><a href="../configs/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_finesegm.yaml">R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_finesegm</a></td>
<td align="center">3x</td>
<td align="center">2.047</td>
<td align="center">0.072</td>
<td align="center">10.3</td>
<td align="center">60.9</td>
<td align="center">58.5</td>
<td align="center">36.7</td>
<td align="center">20.7</td>
<td align="center">30.7</td>
<td align="center">256452819</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_finesegm/256452819/model_final_cb4ac6.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_finesegm/256452819/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_coarsesegm -->
<tr><td align="left"><a href="../configs/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_coarsesegm.yaml">R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_coarsesegm</a></td>
<td align="center">3x</td>
<td align="center">1.830</td>
<td align="center">0.070</td>
<td align="center">9.6</td>
<td align="center">61.3</td>
<td align="center">59.2</td>
<td align="center">37.9</td>
<td align="center">21.5</td>
<td align="center">31.6</td>
<td align="center">256455697</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_coarsesegm/256455697/model_final_a6a4bf.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/evolution/densepose_R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_coarsesegm/256455697/metrics.json">metrics</a></td>
</tr>
</tbody></table>

Acronyms:

`WC1M`: with confidence estimation model type 1 for `U` and `V` and mask confidence estimation

`Atop10P`: humans and animals from the 10 best suitable categories are used for training

`CA`: class agnostic training, where all annotated instances are mapped into a single category

`B_<...>`: schedule with bootstrapping with the specified results sampling strategy

Note:

The relaxed `dp. APex GPS` metric was used in
[Sanakoyeu et al., 2020](https://arxiv.org/pdf/2003.00080.pdf) to evaluate DensePose
results. This metric considers matches at thresholds 0.2, 0.3 and 0.4 additionally
to the standard ones used in the evaluation protocol. The minimum threshold is
controlled by `DENSEPOSE_EVALUATION.MIN_IOU_THRESHOLD` config option.

### License

All models available for download are licensed under the
[Creative Commons Attribution-ShareAlike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/)

## <a name="References"></a> References

If you use chart-based DensePose methods, please take the references from the following
BibTeX entries:

DensePose bootstrapping pipeline:
```
@InProceedings{Sanakoyeu2020TransferringDensePose,
    title = {Transferring Dense Pose to Proximal Animal Classes},
    author = {Artsiom Sanakoyeu and Vasil Khalidov and Maureen S. McCarthy and Andrea Vedaldi and Natalia Neverova},
    journal = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2020},
}
```

DensePose with confidence estimation:
```
@InProceedings{Neverova2019DensePoseConfidences,
    title = {Correlated Uncertainty for Learning Dense Correspondences from Noisy Labels},
    author = {Neverova, Natalia and Novotny, David and Vedaldi, Andrea},
    journal = {Advances in Neural Information Processing Systems},
    year = {2019},
}
```

Original DensePose:
```
@InProceedings{Guler2018DensePose,
  title={DensePose: Dense Human Pose Estimation In The Wild},
  author={R\{i}za Alp G\"uler, Natalia Neverova, Iasonas Kokkinos},
  journal={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2018}
}
```