Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
import contextlib | |
import io | |
import itertools | |
import json | |
import logging | |
import numpy as np | |
import os | |
import tempfile | |
from collections import OrderedDict | |
from typing import Optional | |
from PIL import Image | |
from tabulate import tabulate | |
from detectron2.data import MetadataCatalog | |
from detectron2.utils import comm | |
from detectron2.utils.file_io import PathManager | |
from .evaluator import DatasetEvaluator | |
logger = logging.getLogger(__name__) | |
class COCOPanopticEvaluator(DatasetEvaluator): | |
""" | |
Evaluate Panoptic Quality metrics on COCO using PanopticAPI. | |
It saves panoptic segmentation prediction in `output_dir` | |
It contains a synchronize call and has to be called from all workers. | |
""" | |
def __init__(self, dataset_name: str, output_dir: Optional[str] = None): | |
""" | |
Args: | |
dataset_name: name of the dataset | |
output_dir: output directory to save results for evaluation. | |
""" | |
self._metadata = MetadataCatalog.get(dataset_name) | |
self._thing_contiguous_id_to_dataset_id = { | |
v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items() | |
} | |
self._stuff_contiguous_id_to_dataset_id = { | |
v: k for k, v in self._metadata.stuff_dataset_id_to_contiguous_id.items() | |
} | |
self._output_dir = output_dir | |
if self._output_dir is not None: | |
PathManager.mkdirs(self._output_dir) | |
def reset(self): | |
self._predictions = [] | |
def _convert_category_id(self, segment_info): | |
isthing = segment_info.pop("isthing", None) | |
if isthing is None: | |
# the model produces panoptic category id directly. No more conversion needed | |
return segment_info | |
if isthing is True: | |
segment_info["category_id"] = self._thing_contiguous_id_to_dataset_id[ | |
segment_info["category_id"] | |
] | |
else: | |
segment_info["category_id"] = self._stuff_contiguous_id_to_dataset_id[ | |
segment_info["category_id"] | |
] | |
return segment_info | |
def process(self, inputs, outputs): | |
from panopticapi.utils import id2rgb | |
for input, output in zip(inputs, outputs): | |
panoptic_img, segments_info = output["panoptic_seg"] | |
panoptic_img = panoptic_img.cpu().numpy() | |
if segments_info is None: | |
# If "segments_info" is None, we assume "panoptic_img" is a | |
# H*W int32 image storing the panoptic_id in the format of | |
# category_id * label_divisor + instance_id. We reserve -1 for | |
# VOID label, and add 1 to panoptic_img since the official | |
# evaluation script uses 0 for VOID label. | |
label_divisor = self._metadata.label_divisor | |
segments_info = [] | |
for panoptic_label in np.unique(panoptic_img): | |
if panoptic_label == -1: | |
# VOID region. | |
continue | |
pred_class = panoptic_label // label_divisor | |
isthing = ( | |
pred_class in self._metadata.thing_dataset_id_to_contiguous_id.values() | |
) | |
segments_info.append( | |
{ | |
"id": int(panoptic_label) + 1, | |
"category_id": int(pred_class), | |
"isthing": bool(isthing), | |
} | |
) | |
# Official evaluation script uses 0 for VOID label. | |
panoptic_img += 1 | |
file_name = os.path.basename(input["file_name"]) | |
file_name_png = os.path.splitext(file_name)[0] + ".png" | |
with io.BytesIO() as out: | |
Image.fromarray(id2rgb(panoptic_img)).save(out, format="PNG") | |
segments_info = [self._convert_category_id(x) for x in segments_info] | |
self._predictions.append( | |
{ | |
"image_id": input["image_id"], | |
"file_name": file_name_png, | |
"png_string": out.getvalue(), | |
"segments_info": segments_info, | |
} | |
) | |
def evaluate(self): | |
comm.synchronize() | |
self._predictions = comm.gather(self._predictions) | |
self._predictions = list(itertools.chain(*self._predictions)) | |
if not comm.is_main_process(): | |
return | |
# PanopticApi requires local files | |
gt_json = PathManager.get_local_path(self._metadata.panoptic_json) | |
gt_folder = PathManager.get_local_path(self._metadata.panoptic_root) | |
with tempfile.TemporaryDirectory(prefix="panoptic_eval") as pred_dir: | |
logger.info("Writing all panoptic predictions to {} ...".format(pred_dir)) | |
for p in self._predictions: | |
with open(os.path.join(pred_dir, p["file_name"]), "wb") as f: | |
f.write(p.pop("png_string")) | |
with open(gt_json, "r") as f: | |
json_data = json.load(f) | |
json_data["annotations"] = self._predictions | |
output_dir = self._output_dir or pred_dir | |
predictions_json = os.path.join(output_dir, "predictions.json") | |
with PathManager.open(predictions_json, "w") as f: | |
f.write(json.dumps(json_data)) | |
from panopticapi.evaluation import pq_compute | |
with contextlib.redirect_stdout(io.StringIO()): | |
pq_res = pq_compute( | |
gt_json, | |
PathManager.get_local_path(predictions_json), | |
gt_folder=gt_folder, | |
pred_folder=pred_dir, | |
) | |
res = {} | |
res["PQ"] = 100 * pq_res["All"]["pq"] | |
res["SQ"] = 100 * pq_res["All"]["sq"] | |
res["RQ"] = 100 * pq_res["All"]["rq"] | |
res["PQ_th"] = 100 * pq_res["Things"]["pq"] | |
res["SQ_th"] = 100 * pq_res["Things"]["sq"] | |
res["RQ_th"] = 100 * pq_res["Things"]["rq"] | |
res["PQ_st"] = 100 * pq_res["Stuff"]["pq"] | |
res["SQ_st"] = 100 * pq_res["Stuff"]["sq"] | |
res["RQ_st"] = 100 * pq_res["Stuff"]["rq"] | |
results = OrderedDict({"panoptic_seg": res}) | |
_print_panoptic_results(pq_res) | |
return results | |
def _print_panoptic_results(pq_res): | |
headers = ["", "PQ", "SQ", "RQ", "#categories"] | |
data = [] | |
for name in ["All", "Things", "Stuff"]: | |
row = [name] + [pq_res[name][k] * 100 for k in ["pq", "sq", "rq"]] + [pq_res[name]["n"]] | |
data.append(row) | |
table = tabulate( | |
data, headers=headers, tablefmt="pipe", floatfmt=".3f", stralign="center", numalign="center" | |
) | |
logger.info("Panoptic Evaluation Results:\n" + table) | |
if __name__ == "__main__": | |
from detectron2.utils.logger import setup_logger | |
logger = setup_logger() | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--gt-json") | |
parser.add_argument("--gt-dir") | |
parser.add_argument("--pred-json") | |
parser.add_argument("--pred-dir") | |
args = parser.parse_args() | |
from panopticapi.evaluation import pq_compute | |
with contextlib.redirect_stdout(io.StringIO()): | |
pq_res = pq_compute( | |
args.gt_json, args.pred_json, gt_folder=args.gt_dir, pred_folder=args.pred_dir | |
) | |
_print_panoptic_results(pq_res) | |