Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
import unittest | |
from detectron2.layers import ShapeSpec | |
from detectron2.modeling.mmdet_wrapper import MMDetBackbone, MMDetDetector | |
try: | |
import mmdet.models # noqa | |
HAS_MMDET = True | |
except ImportError: | |
HAS_MMDET = False | |
class TestMMDetWrapper(unittest.TestCase): | |
def test_backbone(self): | |
MMDetBackbone( | |
backbone=dict( | |
type="DetectoRS_ResNet", | |
conv_cfg=dict(type="ConvAWS"), | |
sac=dict(type="SAC", use_deform=True), | |
stage_with_sac=(False, True, True, True), | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=1, | |
norm_cfg=dict(type="BN", requires_grad=True), | |
norm_eval=True, | |
style="pytorch", | |
), | |
neck=dict( | |
type="FPN", | |
in_channels=[256, 512, 1024, 2048], | |
out_channels=256, | |
num_outs=5, | |
), | |
# skip pretrained model for tests | |
# pretrained_backbone="torchvision://resnet50", | |
output_shapes=[ShapeSpec(channels=256, stride=s) for s in [4, 8, 16, 32, 64]], | |
output_names=["p2", "p3", "p4", "p5", "p6"], | |
) | |
def test_detector(self): | |
# a basic R50 Mask R-CNN | |
MMDetDetector( | |
detector=dict( | |
type="MaskRCNN", | |
backbone=dict( | |
type="ResNet", | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=1, | |
norm_cfg=dict(type="BN", requires_grad=True), | |
norm_eval=True, | |
style="pytorch", | |
# skip pretrained model for tests | |
# init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')) | |
), | |
neck=dict( | |
type="FPN", in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5 | |
), | |
rpn_head=dict( | |
type="RPNHead", | |
in_channels=256, | |
feat_channels=256, | |
anchor_generator=dict( | |
type="AnchorGenerator", | |
scales=[8], | |
ratios=[0.5, 1.0, 2.0], | |
strides=[4, 8, 16, 32, 64], | |
), | |
bbox_coder=dict( | |
type="DeltaXYWHBBoxCoder", | |
target_means=[0.0, 0.0, 0.0, 0.0], | |
target_stds=[1.0, 1.0, 1.0, 1.0], | |
), | |
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0), | |
loss_bbox=dict(type="L1Loss", loss_weight=1.0), | |
), | |
roi_head=dict( | |
type="StandardRoIHead", | |
bbox_roi_extractor=dict( | |
type="SingleRoIExtractor", | |
roi_layer=dict(type="RoIAlign", output_size=7, sampling_ratio=0), | |
out_channels=256, | |
featmap_strides=[4, 8, 16, 32], | |
), | |
bbox_head=dict( | |
type="Shared2FCBBoxHead", | |
in_channels=256, | |
fc_out_channels=1024, | |
roi_feat_size=7, | |
num_classes=80, | |
bbox_coder=dict( | |
type="DeltaXYWHBBoxCoder", | |
target_means=[0.0, 0.0, 0.0, 0.0], | |
target_stds=[0.1, 0.1, 0.2, 0.2], | |
), | |
reg_class_agnostic=False, | |
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0), | |
loss_bbox=dict(type="L1Loss", loss_weight=1.0), | |
), | |
mask_roi_extractor=dict( | |
type="SingleRoIExtractor", | |
roi_layer=dict(type="RoIAlign", output_size=14, sampling_ratio=0), | |
out_channels=256, | |
featmap_strides=[4, 8, 16, 32], | |
), | |
mask_head=dict( | |
type="FCNMaskHead", | |
num_convs=4, | |
in_channels=256, | |
conv_out_channels=256, | |
num_classes=80, | |
loss_mask=dict(type="CrossEntropyLoss", use_mask=True, loss_weight=1.0), | |
), | |
), | |
# model training and testing settings | |
train_cfg=dict( | |
rpn=dict( | |
assigner=dict( | |
type="MaxIoUAssigner", | |
pos_iou_thr=0.7, | |
neg_iou_thr=0.3, | |
min_pos_iou=0.3, | |
match_low_quality=True, | |
ignore_iof_thr=-1, | |
), | |
sampler=dict( | |
type="RandomSampler", | |
num=256, | |
pos_fraction=0.5, | |
neg_pos_ub=-1, | |
add_gt_as_proposals=False, | |
), | |
allowed_border=-1, | |
pos_weight=-1, | |
debug=False, | |
), | |
rpn_proposal=dict( | |
nms_pre=2000, | |
max_per_img=1000, | |
nms=dict(type="nms", iou_threshold=0.7), | |
min_bbox_size=0, | |
), | |
rcnn=dict( | |
assigner=dict( | |
type="MaxIoUAssigner", | |
pos_iou_thr=0.5, | |
neg_iou_thr=0.5, | |
min_pos_iou=0.5, | |
match_low_quality=True, | |
ignore_iof_thr=-1, | |
), | |
sampler=dict( | |
type="RandomSampler", | |
num=512, | |
pos_fraction=0.25, | |
neg_pos_ub=-1, | |
add_gt_as_proposals=True, | |
), | |
mask_size=28, | |
pos_weight=-1, | |
debug=False, | |
), | |
), | |
test_cfg=dict( | |
rpn=dict( | |
nms_pre=1000, | |
max_per_img=1000, | |
nms=dict(type="nms", iou_threshold=0.7), | |
min_bbox_size=0, | |
), | |
rcnn=dict( | |
score_thr=0.05, | |
nms=dict(type="nms", iou_threshold=0.5), | |
max_per_img=100, | |
mask_thr_binary=0.5, | |
), | |
), | |
), | |
pixel_mean=[1, 2, 3], | |
pixel_std=[1, 2, 3], | |
) | |