Spaces:
Running
Running
#!/usr/bin/env python | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
""" | |
A main training script. | |
This scripts reads a given config file and runs the training or evaluation. | |
It is an entry point that is made to train standard models in detectron2. | |
In order to let one script support training of many models, | |
this script contains logic that are specific to these built-in models and therefore | |
may not be suitable for your own project. | |
For example, your research project perhaps only needs a single "evaluator". | |
Therefore, we recommend you to use detectron2 as an library and take | |
this file as an example of how to use the library. | |
You may want to write your own script with your datasets and other customizations. | |
""" | |
import logging | |
import os | |
from collections import OrderedDict | |
import torch | |
import detectron2.utils.comm as comm | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import get_cfg | |
from detectron2.data import MetadataCatalog | |
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch | |
from detectron2.evaluation import ( | |
CityscapesInstanceEvaluator, | |
CityscapesSemSegEvaluator, | |
COCOEvaluator, | |
COCOPanopticEvaluator, | |
DatasetEvaluators, | |
LVISEvaluator, | |
PascalVOCDetectionEvaluator, | |
SemSegEvaluator, | |
verify_results, | |
) | |
from detectron2.modeling import GeneralizedRCNNWithTTA | |
def build_evaluator(cfg, dataset_name, output_folder=None): | |
""" | |
Create evaluator(s) for a given dataset. | |
This uses the special metadata "evaluator_type" associated with each builtin dataset. | |
For your own dataset, you can simply create an evaluator manually in your | |
script and do not have to worry about the hacky if-else logic here. | |
""" | |
if output_folder is None: | |
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") | |
evaluator_list = [] | |
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type | |
if evaluator_type in ["sem_seg", "coco_panoptic_seg"]: | |
evaluator_list.append( | |
SemSegEvaluator( | |
dataset_name, | |
distributed=True, | |
output_dir=output_folder, | |
) | |
) | |
if evaluator_type in ["coco", "coco_panoptic_seg"]: | |
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) | |
if evaluator_type == "coco_panoptic_seg": | |
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) | |
if evaluator_type == "cityscapes_instance": | |
assert ( | |
torch.cuda.device_count() > comm.get_rank() | |
), "CityscapesEvaluator currently do not work with multiple machines." | |
return CityscapesInstanceEvaluator(dataset_name) | |
if evaluator_type == "cityscapes_sem_seg": | |
assert ( | |
torch.cuda.device_count() > comm.get_rank() | |
), "CityscapesEvaluator currently do not work with multiple machines." | |
return CityscapesSemSegEvaluator(dataset_name) | |
elif evaluator_type == "pascal_voc": | |
return PascalVOCDetectionEvaluator(dataset_name) | |
elif evaluator_type == "lvis": | |
return LVISEvaluator(dataset_name, output_dir=output_folder) | |
if len(evaluator_list) == 0: | |
raise NotImplementedError( | |
"no Evaluator for the dataset {} with the type {}".format(dataset_name, evaluator_type) | |
) | |
elif len(evaluator_list) == 1: | |
return evaluator_list[0] | |
return DatasetEvaluators(evaluator_list) | |
class Trainer(DefaultTrainer): | |
""" | |
We use the "DefaultTrainer" which contains pre-defined default logic for | |
standard training workflow. They may not work for you, especially if you | |
are working on a new research project. In that case you can write your | |
own training loop. You can use "tools/plain_train_net.py" as an example. | |
""" | |
def build_evaluator(cls, cfg, dataset_name, output_folder=None): | |
return build_evaluator(cfg, dataset_name, output_folder) | |
def test_with_TTA(cls, cfg, model): | |
logger = logging.getLogger("detectron2.trainer") | |
# In the end of training, run an evaluation with TTA | |
# Only support some R-CNN models. | |
logger.info("Running inference with test-time augmentation ...") | |
model = GeneralizedRCNNWithTTA(cfg, model) | |
evaluators = [ | |
cls.build_evaluator( | |
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA") | |
) | |
for name in cfg.DATASETS.TEST | |
] | |
res = cls.test(cfg, model, evaluators) | |
res = OrderedDict({k + "_TTA": v for k, v in res.items()}) | |
return res | |
def setup(args): | |
""" | |
Create configs and perform basic setups. | |
""" | |
cfg = get_cfg() | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.freeze() | |
default_setup(cfg, args) | |
return cfg | |
def main(args): | |
cfg = setup(args) | |
if args.eval_only: | |
model = Trainer.build_model(cfg) | |
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( | |
cfg.MODEL.WEIGHTS, resume=args.resume | |
) | |
res = Trainer.test(cfg, model) | |
if cfg.TEST.AUG.ENABLED: | |
res.update(Trainer.test_with_TTA(cfg, model)) | |
if comm.is_main_process(): | |
verify_results(cfg, res) | |
return res | |
""" | |
If you'd like to do anything fancier than the standard training logic, | |
consider writing your own training loop (see plain_train_net.py) or | |
subclassing the trainer. | |
""" | |
trainer = Trainer(cfg) | |
trainer.resume_or_load(resume=args.resume) | |
if cfg.TEST.AUG.ENABLED: | |
trainer.register_hooks( | |
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))] | |
) | |
return trainer.train() | |
if __name__ == "__main__": | |
args = default_argument_parser().parse_args() | |
print("Command Line Args:", args) | |
launch( | |
main, | |
args.num_gpus, | |
num_machines=args.num_machines, | |
machine_rank=args.machine_rank, | |
dist_url=args.dist_url, | |
args=(args,), | |
) | |